a2 United States Patent

Strom

US009466125B2

US 9,466,125 B2
*QOct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(30)

May 27, 2005
Jul. 1, 2005

(1)

(52)

WEIGHT BASED IMAGE PROCESSING

Applicant: TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)
Inventor: Jacob Strom, Stockholm (SE)

TELEFONAKTIEBOLAGET LM
ERICSSON (PUBL), Stockholm (SE)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 14/709,821

Filed: May 12, 2015

Prior Publication Data

US 2015/0243051 Al Aug. 27, 2015

Related U.S. Application Data

Continuation of application No. 13/826,578, filed on
Mar. 14, 2013, now Pat. No. 9,087,365, which is a
continuation of application No. 11/915,669, filed as
application No. PCT/SE2006/000613 on May 24,
2006, now Pat. No. 8,457,417.

Foreign Application Priority Data

....................................... 0501260
PCT/SE2005/001070

(SE)
(WO) oo
Int. CL
GOG6K 9/36
GO6T 9/00

(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC ... GO6T 9/00 (2013.01); GO6T 9/001

(2013.01); GO6T 9/004 (2013.01); HO4N

IDETERMINE COLOR}
VALUES

PROVIDE COLOR
WEIGHTS

CALCULATE

COLOR.
REPRESENTATIONS]

g d s 1
i GENERATE t
$43~| DECODED IMAGE |
{REPRESENTAT!ON Jl

STOP

19/105 (2014.11); HO4N 19/176 (2014.11);
HO4N 19/186 (2014.11); HO4N 19/593
(2014.11)
(58) Field of Classification Search
USPC 382/166, 162, 164, 165, 232; 341/63,
341/64; 348/234, 253, 362; 375/E7.084
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,376,290 A 3/1983 Shirota
5,682,249 A 10/1997 Harrington
(Continued)
FOREIGN PATENT DOCUMENTS
EP 1174824 A2 1/2002
EP 1349394 A2 10/2003
(Continued)

OTHER PUBLICATIONS

Heckbert, Paul: “Color Image Quantization for Frame Buffer Dis-
play”. New York Institute of Technology. Computer Graphics, vol.
16, No. 3. Jul. 1982.

(Continued)

Primary Examiner — Anh Do
57 ABSTRACT

In an image-encoding scheme, an input image is decom-
posed into several image blocks comprising multiple image
elements. The image blocks are encoded into encoded block
representations. In this encoding, color weights are assigned
to the image elements in the block based on their relative
positions in the block. At least two color codeword are
determined, at least partly based on the color weights. These
codewords are representations of at least two color values.
The original colors of the image elements are represented by
color representations derivable from combinations of the at
least two color values weighted by the assigned color
weights.

19 Claims, 15 Drawing Sheets

L8

US 9,466,125 B2

Page 2

(51) Int. CL

HO4N 19/176
HO4N 19/186
HO4N 19/105
HO4N 19/593

(56)

5,684,895
5,808,621
5,956,431
6,078,689
6,266,165
6,301,389
6,331,902
6,404,923
6,591,009
6,658,146
6,701,007
7,693,337
7,734,105
7,787,691
7,834,887
8,144,981

8,457,417

9,087,365

(2014.01)
(2014.01)
(2014.01)
(2014.01)

References Cited

U.S. PATENT DOCUMENTS

A
A
A
A
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
B2
B2
B2
B2 *

B2 *

B2 *

11/1997
9/1998
9/1999
6/2000
7/2001

10/2001

12/2001
6/2002
7/2003

12/2003
3/2004
4/2010
6/2010
8/2010

11/2010
3/2012

6/2013
7/2015

Harrington
Sundaresan
Tourcha et al.
Kunitake et al.
Huang et al.
Penna et al.
Lin

Chaddha
Usami et al.
Tourcha et al.
Yamaguchi
Stréom

Strom et al.
Strom

Xu et al.

Pettersson

2003/0067991 Al 4/2003 Okamoto
2004/0151372 Al 8/2004 Reshetov et al.
2007/0071333 Al 3/2007 Strom et al.
2007/0237404 Al 10/2007 Strom
2008/0239152 Al 10/2008 Masuo
2009/0092315 Al 4/2009 Strom

GO6T 9/008
382/162
GO6T 9/001
348/234
GO6T 9/001

FOREIGN PATENT DOCUMENTS

RU
WO

2024214 C1
WO 99/18537

11/1994
4/1999

OTHER PUBLICATIONS

Fenney, Simon: “Texture Compression using Low-Frequency Sig-
nal Modulation”. Graphics Hardware (2003). XP-002637329.
Strom, et al.: “PACKMAN: Testure Compression for Mobile
Phones”. Ericsson Research, Lund University/Ericsson Mobile Plat-
forms. 2004.

Strom, et al.: “iPACKMAN: High-Quality, Low-Complexity Tex-
ture Compression for Mobile Phones”. Ericsson Research, Lund
University. 2005.

Akenine-Moller, et al.: “Graphics for the Masses: A Hardware
Rasterization Architecture for Mobile Phones”. Chalmers Univer-
sity of Technology.

Petterson, et al.: “Texture Compression: THUMB—Two Hues
Using Modified Brightness”. (2005) XP002396817.

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 15 US 9,466,125 B2

¥
H
1 BECOMPOSE
! IMAGE §

ASRIGN COLOR

: '?“"‘A - -
82 WEIGHTS

A

Fig. 1

DETERMINE COLOR L2

¥ T SN .
ST S ODEWORDS
g4~ REPRESENT
ST ORIGINAL COLORS
N
{ STOP)
N -~
\\M\m‘.m.wv«-*“"“_ =
600
w’j’-
§1D

U.S. Patent Oct. 11, 2016 Sheet 2 of 15 US 9,466,125 B2

600

&
R} RS

§10

o
&

Fig. 3

PREEE
.

=

e
)

)
Zl

s

&1

RY,

y

R
§ 1]

L4

US 9,466,125 B2

Sheet 3 of 15

Oct. 11, 2016

U.S. Patent

9 B1d

84, 574, 014
\}?\\ ..\nr%\ \3,.\
PHOMAGAOD AT AL GROMIO0D
WO (148 U N LIS A
e
EATA
¥ B
1778 057 GEL 1193
P o oo? ot
VEOMAC0D TAOMTO0D AOMAG0D HOMHEION
AU LY ROV (g% YO T YO0 15T
,\\

oL

U.S. Patent Oct. 11, 2016 Sheet 4 of 15 US 9,466,125 B2

f s GG
fv‘“
8 &
Ry Ry
il
N
R Y
Fig. 7
600
& 7
Ryt
R i
kR
Ry o Ry
&0

US 9,466,125 B2

Sheet 5 of 15

.\\\\y\\%.:. i eff.!/«
(aois) & By

— -
i 1L 81
% Ob 8t 5 dHLE O
WA S .
AGOW aqIAGEd | ST TN
LVAL SCI0MEA0D

IR LORATES

MOLLY IHASHELEYE _ ~EiE

THSSHUANOD 628
LOHTAS L

WOET F90LS

L

Oct. 11, 2016

U.S. Patent

FOEEA AIYVINAYTIYY BOYHS BLVINOIVY MOEET AIVIILYIV BOYEE BLYTOY IV BOFET ALVINILEY
1)] £)))] 11)
L7 u.,k are -~ 575 A A 15
HEIOW MLy SOIOW e TOOW N BOOW SOYOMATOD
DL DNITIOD0Y (oL ORHTEO0Y {31, SRICIOO0Y 15 OL DO | BOTOD RLYOIHINY D
O BSHUAWOD T YO0 SETEANOD r FIHYTE SSEHAMOD T 0T SR AITEE
7 Pyl b _
28 1zl s “ggs e Loig

75 4HLE WOYd
5 49LE Wird

US 9,466,125 B2

Sheet 6 of 15

Oct. 11, 2016

U.S. Patent

17 Big

07 91

PR 4518 0L

£9% JHIS O
H
M
NOLLYINGSTMEE L
s Lvasan |
Al

MNOLLYINEEELN
OGS LR

ARt 0

BALAKIOW
ALIBMALNTI 103THE

4 \\,.N“m\\p,a

RICER-CILI e8]

Y H0 ANINEE LA

AUBNEINT LB
HIAGH
; 7
HYTHA 015

055 ddLs Wirdd

HROLLY LHNHERTHAHY

RO ALY HENAD

S

AVIYA
BIOD GNODES

e

BTV A G000
SRS AL RIS BRGNS

T H9

DR JA LS WOEd

11814

LES A LS 0Ls JHIR O

KON
ALENAINIAD IO L TER
1R
THOMIAI0OD
ALSKEINY GO o 15%
IO AL
RMIAOMEA00 | A5G
AOTTOD eI EALEa T

{54015 W4

U.S. Patent

Oct. 11, 2016

Sheet 7 of 15

¢ @é S “n,

US 9,466,125 B2

U.S. Patent

Oct. 11, 2016 Sheet 8 of 15

Fig. 134

Fig. 13B

US 9,466,125 B2

L1 8y

US 9,466,125 B2

Sheet 9 of 15

Oct. 11, 2016

U.S. Patent

957 yiL 7El 97L, vie 08¢ 270 o6 714 D6
o ot oot " o g it ot
b.mt.”m wﬁ M“w A % \Nw m m M,m m”w 3 m‘w..m) @ .MM m%
a./f.l M i .!./}. M \\
i g T 7 e e o0t
91 814
092 G8L 054 WIL VEL EU4 DIL06L OSL ¥IL 214 OGL
i it et ol rd ok od o o e
REOWINI OO0 Wl o1e oD | M 1 oHd | U400 | o
M w \,. /J!f! i .,
e YA Q1L N
ST 73
891 48 0SL 97 ¥TL TEL 914 PIL DL TiL 064
et b et e et AN G-
SHAINI MDD qaow | | 0 | 1 bE | DD Bu 0y 7
3 } . -
f{xm&_\\ Rt i 1) \“ ~ S0
v1 B
oz, 08, OLLMOSLVUSL 9T 9L Il YIL T Tl
et o, \..\ e ...\ vy ! \z....\ \sat sena?
SR ALISNALNT AR R R - N U5 I B s S U 3 B
S oz = T e BiL J " ans

U.S. Patent Oct. 11, 2016

Sheet 10 of 15

DETERMINE COLOR;

24N VALUES

PROVIDE COLOR

ST WEIGHTS

CALCULATE
COLOR
REFRESENTATIONS

B4

\»‘E.»ﬁ

! GENERATE i

$43\.) DECODED IMAGR |
| REFRESENTATION &

US 9,466,125 B2

"N :{.e {‘i

US 9,466,125 B2

&1 8

VS d9LS DL
3

¥
H

Sheet 11 of 15

Oct. 11, 2016

U.S. Patent

FGOW BIOW AN Eleisly]
HALY MY ADCE {IMZ MEADY Y UNT WL 220714 LA ML ADE
SEHMIWODEG SETAANOE0 SR AN EEHMANOOE

5 rw;\ﬂ .wahw
SO0
HSBAANOA0 U85
AAHE
B .\\x\;\l&. S:SS..F}.?..,.

,,,
\ LEVIR 3
. \\

315{\.53..?..\\&:%\ e

Sheet 12 of 15 US 9,466,125 B2

U.S. Patent Oct. 11, 2016

.
A
{
- 100
P -
e ‘\
1D
)
VO 20
ot
-~
GRAPHIC SYSTEM 130
IMAGE 2
DRRCODER o
150
o
Py 206
IMAGE 20
ENCODER -
STORAGE 140
-
o

US 9,466,125 B2

Sheet 13 of 15

Oct. 11, 2016

U.S. Patent

£z Big

(17

ot

oot
\.f\
u7s
et
HWAZLLNYOD
WO
nig
\s..{.x

FANDISEY
LHOIEM

BAIOE A0

FAGOE

FHYIY

o 17

v 5% 25 s
144 e

BABOAWOIE
HEY N

BAQOME GOV

U.S. Patent

Oct. 11, 2016

Sheet 14 of 15

BLOCK ENCORER

WEIGHT
ASSIGNER

COLGR
QUANTIZER

et
- £ o
330

BMOQDE
SELECTGR

(.-w\,-"

380

MODIFIER
TARLE

e it

340
g

e

US 9,466,125 B2

MODIFIER
QUANTEZER

TNDEX
SELECTOR

gy
330

MODE INDEX
MANAGER

JN
3

—

18

Fig. 23

BLOCK DECODER
410

el

430

430
J

e

COLOR
GENERATOR

COLOR
CALOULATOR

COLOR
SELECTOR

S

R

440

Pl

450

s
§

WEIGHT
MANAGER

COLOR
MOIMFIER

MODE
SELECTOR

MODIFIER
MANAGER

N

MODIFIER
TABLE

REE

4

US 9,466,125 B2

Sheet 15 of 15

Oct. 11, 2016

U.S. Patent

L8y

GAOVRYW
LHDIEM
iy

ALY TY)

HOLVHHENGD

B BIO0
7 e
oty iy
WA YIS
\}..\
141

HASODNOD |

OV]

R A
w2z

HAIEA
W

V\Ets\ e
a0e Eee

HOLE
HIE

WA DV

US 9,466,125 B2

1
WEIGHT BASED IMAGE PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/826,578, filed Mar. 14, 2013, now U.S. Pat. No.
9,087,365, which is a continuation of U.S. application Ser.
No. 11/915,669, filed Nov. 27, 2007, now U.S. Pat. No.
8,457,417, which is a National Stage of International Appli-
cation No. PCT/SE2006/000613, filed May. 24, 2006, which
claims the benefit of Swedish Application No. 0501260.4,
filed May. 27, 2005 and PCT/SE2005/001070 filed Jul. 1,
2005, the disclosures of which are incorporated herein by
reference.

TECHNICAL FIELD

The present invention generally refers to image process-
ing, and in particular to methods and systems for encoding
and decoding images.

BACKGROUND

Presentation and rendering of images and graphics on data
processing systems and user terminals, such as computers,
and in particular on mobile terminals have increased tre-
mendously the last years. For example, three-dimensional
(3D) graphics and images have a number of appealing
applications on such terminals, including games, 3D maps
and messaging, screen savers and man-machine interfaces.

A 3D graphics rendering process typically comprises
three sub-stages. Briefly, a first stage, the application stage,
creates several triangles. The corners of these triangles are
transformed, projected and lit in a second stage, the geom-
etry stage. In a third stage, the rasterization stage, images,
often denoted textures, can be “glued” onto the triangles,
increasing the realism of the rendered image. The third stage
typically also performs sorting using a z-buffer.

However, rendering of images and textures, and in par-
ticular 3D images and graphics, is a computationally expen-
sive task in terms of memory bandwidth and processing
power required for the graphic systems. For example, tex-
tures are costly both in terms of memory, the textures must
be placed on or cached in fast on-chip memory, and in terms
of memory bandwidth, a texture can be accessed several
times to draw a single pixel.

In order to reduce the bandwidth and processing power
requirements, an image (texture) encoding method or system
is typically employed. Such an encoding system should
result in more efficient usage of expensive on-chip memory
and lower memory bandwidth during rendering and, thus, in
lower power consumption and/or faster rendering.

Delp and Mitchell [1] developed a simple scheme, called
block truncation coding (BTC) for image compression. Even
though their applications were not texture compression per
se, several of the other schemes described in this section are
based on their ideas. Their scheme compressed grey scale
images by considering a block of 4x4 pixels at a time. For
such a block, two 8-bit grey scale values were stored, and
each pixel in the block then used a single bit to index to one
of these grey scales. This resulted in 2 bits per pixel (bpp).

A simple extension, called color cell compression (CCC),
of BTC was presented by Campbell et al. [2]. Instead of
using an 8-bit grey scale value, the 8-bit value is employed
as an index into a color palette. This allows for compression

25

35

40

45

2

of colored textures at 2 bpp. However, a memory lookup in
the palette is required, and the palette is restricted in size.

The S3TC texture compression method by lourcha et al.
[3] is currently probably the most popular scheme. It is used
in DirectX and there are extensions for it in OpenGL as well.
Their work can be seen as a further extension of CCC. The
block size for S3TC is 4x4 pixels that are compressed into
64 bits. Two base colors are stored as 16 bits each, and each
pixel stores a two-bit index into a local color palette that
consists of the two base colors and two additional colors
in-between the base colors. This means that all colors lie on
a line in RGB space. S3TC’s compression rate is 4 bpp. One
disadvantage of S3TC is that only four colors can be used
per block.

Fenney [4] introduces a radically different scheme that is
used in the MBX graphics hardware platform for mobile
phones. This scheme uses two low-resolution images and
these are bilinearly upscaled during decompression. Each
pixel also stores a blendfactor between these two upscaled
images. Compression of 4 bpp and 2 bpp are described. 64
bits are used per block. The major disadvantage of Fenny’s
scheme, which makes it less attractive in real implementa-
tions, is that information is needed from neighboring image
blocks during decompression, which severely complicates
decompression.

PACKMAN is a recent texture compression method
developed by Strom and Akenine -Moller [5]. It encodes a
block of 2x4 texels (pixels) into 32 bits. Only one color is
used per block, but in each pixel this color can be modified
in intensity. The major goal of PACKMAN was to allow for
minimal decompression complexity. In PACKMAN the
chrominance is heavily quantized, which may introduce
block artifacts.

In order to improve PACKMAN, Strém and Akenine-
Moller developed an improved compression method
denoted iPACKMAN//Ericsson Texture Compression (ETC)
[6, 7]. In IPACKMAN/ETC two 2x4 image blocks are
encoded in common, which allowed for differential encod-
ing of the colors. This made it possible to have finer
quantization of the colors, resulting in an increase in quality
of about 3 dB. Hence, this compression method passed
S3TC in terms of quality and is currently the highest quality
texture compression method/system publicly known.

There is still a need to improve image compression and in
particular in terms of compressing and decompressing prob-
lematic image blocks having certain color characteristics
that cannot be efficiently handled by the prior art image
processing schemes at a high quality. Such problematic
image blocks include blocks having slowly varying transi-
tions between two or more colors.

SUMMARY

The present invention overcomes these and other draw-
backs of the prior art arrangements.

It is a general object of the present invention to provide an
image processing scheme that effectively can handle image
blocks having slowly varying transitions between two or
more colors.

This and other objects are me by the invention as defined
by the accompanying patent claims.

Briefly, the present invention involves an image process-
ing in the form of encoding (compressing) an image and
decoding (decompressing) an encoded (compressed) image.

According to the invention, an image to be encoded is
decomposed into a number of image blocks comprising
multiple image elements (pixels, texels or voxels). An image

US 9,466,125 B2

3

block preferably comprises sixteen image elements and has
a size of 2"x2” image elements, where m and n preferably
are 2. Each image element in a block is characterized by an
image element property, preferably a color, e.g. a 24-bit
RGB (red, green, blue) color. The image blocks are then
encoded.

In this (lossy) block encoding, color weights are assigned
to at least a subset of the image elements in the image block.
At least two color codeword that are representations of at
least two color values are then determined at least partly
based on the assigned color weights. The generated encoded
or compressed representation of the image block comprises
the at least two color codewords, which can be regarded as
quantized color values. As a consequence, the original colors
of'the image elements in the image block will be represented
by color representations derivable from the at least two color
values, in turn obtainable from the at least two color
codewords. In addition, the color representations of the
image elements in the at least one subset are derivable from
combinations of the at least two color values weighted by
assigned color weights.

This way of representing image blocks effectively handles
smoothly varying transitions of at least two colors within an
image block and such transitions and color slopes extending
over neighboring blocks. Other advantages offered by the
present invention will be appreciated upon reading of the
below description of the embodiments of the invention.

During decoding or decompression, the at least two color
values are determined based on the at least two color
codewords. The color weights assigned to an image element
to be decoded is then. Finally, a color representation to use
for this image element is calculated based on the provided
color weights and the determined at least two color values.

The present invention also teaches systems for encoding
images and image blocks, systems for decoding encoded
images and image blocks and user terminals housing such
systems.

SHORT DESCRIPTION OF THE DRAWINGS

The invention together with further objects and advan-
tages thereof, may best be understood by making reference
to the following description taken together with the accom-
panying drawings, in which:

FIG. 1 is a flow diagram illustrating a method of com-
pressing/encoding an image and image block according to
the present invention;

FIG. 2 is an illustration of an example of an image block
according to the present invention;

FIG. 3 is a drawing schematically illustrating assignment
of color Weights according to an embodiment of the present
invention;

FIG. 4 is an illustration of a compressed representation of
an image block according to an embodiment of the present
invention;

FIG. 5 is a drawing schematically illustrating assignment
of color weights according to another embodiment of the
present invention;

FIG. 6 is an illustration of a compressed representation of
an image block according to another embodiment of the
present invention;

FIG. 7 is a drawing schematically illustrating assignment
of color weights according to a further embodiment of the
present invention;

FIG. 8 is a drawing schematically illustrating assignment
of color weights according to yet another embodiment of the
present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9 is a flow diagram illustrating an embodiment of the
determining step of FIG. 1 in more detail;

FIG. 10 is a flow diagram of additional steps of the image
encoding/compressing method of FIG. 1 according to a
multi-mode implementation of the present invention;

FIG. 11 is a flow diagram illustrating embodiments of
compressing steps of FIG. 10 in more detail;

FIG. 12A is a diagram illustrating the distribution of
colors of image elements of an image block that advanta-
geously can be compressed according to a mode of the
multi-mode implementation;

FIG. 12B is a diagram illustrating color representations
generated according to a mode of the multi-mode imple-
mentation and suitable for representing the colors of the
image elements illustrated in FIG. 12A;

FIG. 13A is a diagram illustrating the distribution of
colors of image elements of another image block that
advantageously can be compressed according to another
mode of the multi-mode implementation;

FIG. 13B is a diagram illustrating color representations
generated according to another mode of the multi-mode
implementation and suitable for representing the colors of
the image elements illustrated in FIG. 3A;

FIGS. 14 to 17 are illustrations of compressed represen-
tations of an image block according to the multi-mode
implementation;

FIG. 18 is a flow diagram of a method of decoding/
decompressing a compressed image and image block
according to the present invention;

FIG. 19 is a flow diagram illustrating additional steps of
the decoding/decompressing method of FIG. 20 for a multi-
mode implementation;

FIG. 20 is a flow diagram illustrating embodiments of the
decompressing step of FIG. 19 in more detail;

FIG. 21 is a flow diagram illustrating another embodiment
of the decompressing step of FIG. 19 in more detail;

FIG. 22 schematically illustrates an example of a user
terminal with an image encoder and decoder according to
the present invention;

FIG. 23 is a block diagram schematically illustrating an
embodiment of an image encoder according to the present
invention;

FIG. 24 is a block diagram schematically illustrating an
embodiment of a block encoder according to the present
invention;

FIG. 25 is a block diagram schematically illustrating
another embodiment of a block encoder according to the
present invention;

FIG. 26 is a block diagram schematically illustrating an
embodiment of an image decoder according to the present
invention;

FIG. 27 is a block diagram schematically strafing an
embodiment of a block decoder according to the present
invention; and

FIG. 28 is a block diagram schematically illustrating
another embodiment of a block decoder according to the
present invention.

DETAILED DESCRIPTION

Throughout the drawings, the same reference characters
will be used for corresponding or similar elements.

The present invention relates to image and graphic pro-
cessing, and in particular to encoding or compressing
images and image blocks and decoding or decompressing
encoded (compressed) images and image blocks.

US 9,466,125 B2

5

Generally, according to the invention, during image
encoding, an image is decomposed or divided into a number
of image blocks. Each such image block then comprises
multiple image elements having, among others, a certain
color. The image blocks are encoded or compressed to
generate an encoded/compressed representation of the
image.

When an encoded image or graphic primitive subse-
quently is to be rendered, e.g. displayed on a screen, the
relevant image elements of the encoded image blocks are
identified and decoded. These decoded image elements are
then used to generate a decoded representation of the
original image or graphics primitive.

The present invention is well adapted for usage with
three-dimensional (3D) graphics, such as games, 3D maps
and scenes, 3D messages, e.g. animated messages, screen
savers, man -machine interfaces (MMlIs), etc., but is not
limited thereto. Thus, the invention could also be employed
for encoding other types of images or graphics, e.g. one-
dimensional (1D), two -dimensional (2D) or 3D images.

In 3D graphics processing, typically several triangles are
created and the corresponding screen coordinates of the
corners of these triangles are determined. Onto each triangle,
an image (or portion of an image), or a so-called texture, is
mapped (“glued”). The management of textures is, though,
costly for a graphic system, both in terms of utilized memory
for storage of textures and in terms of memory bandwidth
during memory accesses, when textures are fetched from the
memory. This is a problem particularly for thin clients, such
as mobile units and telephones, with limited memory capac-
ity and bandwidth. As a consequence, a texture or image
encoding scheme is often employed. In such a scheme, a
texture is typically decomposed or divided into a number of
image blocks comprising multiple texels. The image blocks
are then encoded and stored in a memory. Note that the size
of'an encoded (version of an) image block is smaller than the
corresponding size of the uncoded version of the image
block.

In the present invention the expression “image element”
refers to an element in an image block or encoded repre-
sentation of an image block. This image block, in turn,
corresponds to a portion of an image or texture. Thus,
according to the invention, an image element could be a
texel (texture element) of a (1D, 2D, 3D) texture, a pixel of
a (1D or 2D) image or a voxel (volume element) of a 3D
image. Generally, an image element is characterized by
certain image-element properties, such as a color value.
Furthermore, in the following, the term “image” is used to
denote any 1D, 2D or 3D image or texture that can be
encoded and decoded by means of the present invention,
including but not limited to photos, game type textures, text,
drawings, etc.

The present invention provides an image processing that
is in particular suitable for compressing and decompressing
images and image blocks with slowly varying transitions
between at least two colors. In the prior art schemes,
discussed in the background section, a color palette com-
prising typically four color values is formed in color space
by means of color codewords (S3TC) or color codeword(s)
and intensity/color modifier codeword(s) (PACKMAN and
iPACKMAN/ETC). Each image element then has a color
index associated with one of the colors in the color palette.
With such a solution, it is generally hard to processing image
elements with slowly varying color transitions.

In clear contrast to these prior art schemes, the present
invention assigns different color weights to image elements
in an image block. Thereafter, colors to use for the image

10

15

20

25

30

35

40

45

50

55

60

65

6

block are determined based at least partly on the assigned
color weights. This means that the original colors of the
image elements will be represented by color representations
derivable from combinations of the determined colors
weighted by the assigned color weights. This potentially
allows utilizing unique color representations, depending on
the assigned color weights, for each image element in the
block, which in turn means a much larger color palette. In
addition, the color weights can be set so that also problem-
atic blocks having slowly varying color transitions can be
represented at a high image quality.

Compression

FIG. 1 illustrates a flossy) method of encoding an image
according to the present invention. In a first step S1, the
image is decomposed or divided into a number of image
blocks. Each such image block then comprises multiple
image elements. In a preferred embodiment of the invention,
an image block comprises sixteen image elements (pixels,
texels or voxels) and has a size of 2"'x2” image elements,
where m=4-n and n=0, 1, 2, 3, 4. More preferably, m and n
are both 2. It could also be possible to utilize an image block
of'size 27'x2” or 2"'x2"x2F image elements, where m, n, p are
zero or positive integers with the proviso that not all of m,
n, p may simultaneously be zero. FIG. 2 schematically
illustrates an example of an image block 600 with sixteen
image elements 610 according to the present invention. In an
alternative embodiment of the present invention, the image
is decomposed into a number of image sub-blocks, prefer-
ably having a size of 2x4 or 4x2 image elements. In such a
case, two such sub-blocks could be handled together during
compression to form a 4x4 block 600 as illustrated in FIG.
2. Returning to FIG. 1, the whole image block is preferably
decomposed into (non-overlapping) image blocks in step S1.
However, in some applications, only a portion of an image
is encoded and, thus, only this portion is decomposed into
image blocks.

The following steps S2 and S4 perform an encoding or
compression of the image blocks. Firstly, in step S2, color
weights are assigned to at least a subset of the image
elements in the image block, which is schematically illus-
trated by the line L1. The color weights are preferably
determined based on the relative position the image ele-
ments of the at least one subset have in the image block.
These color weights will be used during decompression for
weighting different colors determined for the image block to
generate color representations used for representing the
original (“true”) colors of the image elements. For example,
assume that two colors (C, and C,) are determined for the
current image block. The color weights assigned in this step
S2 can then be w,® and w,™ for image element having
position (x,y) in the image block. During compression, the
image representation of this image element will be w;>C,+
w,?C,, thus a weighted combination, in this case a linear
combination, of the two colors.

As is well known in the art, a color typically comprises
multiple color components, most three color components
depending on the proprietary color space utilized. For
example, the colors could be RGB (Red, Green, Blue)
colors, colors in the YIN space or YCrCb space, or any other
proprietary color space used in image and graphics process-
ing and management. In such a case, the multiple color
weights assigned in step S2 could regarded as a color weight
vector

X xy %y
ny_[WRO Wéo WBO}

X x |
WgL War Wpi

US 9,466,125 B2

7

In this case, the individual component elements in a weight,
vector could be set individually or at least could be equal. In
the case Wy =wz,"=ws, ™, the weight vector only com-
prises two weights

Wy
wy

per image element in this illustrative example.

The color weights are preferably assigned for each image
element in at least one subset of the image elements in the
blocks, which is represented by the line [L1. In a first
embodiment, the image block comprises N image elements,
N is an integer larger than one, and the subset comprises M
image elements, where 0<M<N. This means that no color
weights are assigned for the remaining N-M image
element(s). In that case, the original color of this (these)
remaining image element(s) is represented by one of the
color codewords to be determined for the image block.
However, this basically corresponds to setting all component
elements of one of the color weight vectors to 1 and setting
all component elements of the other color weight vector(s)
to 0.

Therefore, in another preferred implementation of the
present invention, color weights are assigned to all image
elements in the block by basically repeating the step S2 for
each image element. In this embodiment, at least on the
color weights assigned to at least one image elements is
preferably different from 0, 1 and -1.

In a next step S3, at least two color codewords are
determined for the image block based on or using the
assigned color weights. These at least two color codewords
are representations of at least two color values. As noted
above, the color values could be RGB (Red, Green, Blue)
colors, colors in the YUV space or YCrCb space, or any
other proprietary color space used in image and graphics
processing and management.

The color codewords are preferably in the same color
format (space) as the image. However, in some cases, it may
be useful to convert the image to a different color space, i.e.
having the color codewords in a first color space and the
original image in a second different color space.

In a first embodiment of the present invention, two color
codewords are determined in this step S3 based on the
assigned color weights. However, in a preferred implemen-
tation of the present invention three, or sometimes four or
more, color codewords are instead determined based on the
color weights. These multiple codewords then represent
three, four or more, color values. According to the present
invention, it is possible, by basing the color codeword
determination on the assigned color weights, to determine
color codewords resulting in high image quality and allow-
ing generation of color representations having slowly vary-
ing color transitions.

In a next step S4, the original colors of the multiple image
elements in the block are represented by color representa-
tions derivable from the at least two color values, in turn
being represented by the at least two color codewords
determined in step S3. In addition, color representations of
the image elements in the at least one subset, i.e. those image
elements for which color weights were assigned in step S2,
are derivable from combinations of the at least two color
values weighted by the assigned color weights.

If the at least one subset comprises a first subset of the
image element in the block, the color representations of

10

15

20

25

30

40

45

50

60

o

5

8

these image elements are derivable from combinations of the
at least two color values weighted by the assigned color
weights. However, color representations of image elements
in a second remaining subset of the image elements in the
block are selected directly from the color values and there-
fore do not constitute combinations of multiple color values.

The steps S2 to S4 are preferably repeated for all image
blocks provided during the decomposing of step S1 (sche-
matically illustrated by line [.2). The result is then a
sequence or file of encoded image blocks. The encoded
image blocks (encoded representations of the image blocks)
could be ordered in a file from left to right and top to bottom
in the same order in which they were broken down in the
block decomposing of step S1. The method then ends.

The encoded image could be provided to a memory for
storage therein until a subsequent rendering, e.g. display, of
the image. Furthermore, the encoded image could be pro-
vided as a signal of encoded block representations to a
transmitter for (wireless or wired) transmission to another
unit.

FIG. 3 is a schematic illustration of an image block 600
in an image or texture to be compressed according to the
present invention. In this first implementation of the present
invention, four color codewords are to be determined for the
image block 600. Each of the four color codewords represent
a respective color value, the red components of which are
denoted by R,, R;, R, and R;. This embodiment basically
allows for a bilinear upscaling but where all the colors
needed for the bilinear upscaling are stored as a compressed
representation for the image block. In this embodiment, the
image elements 610 forming the corners of the image block
600 have color weights of only ones and zeros. Table 1
illustrates the color weights assigned to the image elements
610 in the block according to this embodiment of the present
invention.

TABLE 1

color weights

Position (x, y) Color 0 Color 1 Color 2 Color 3
©, 0) 1 0 0 0
1, 0) 24 Y4 0 0
(2,0)) 24 0 0
3,0 0 1 0 0
0, 1) 24 0) 0
1, 1) Va 2% 2% Yo
2, 1)] 4% Yo %
3,1 0 24 0)
0, 2) Y4 0 24 0
1,2] Yo 4% %
2,2 Yo %% %% Yo
(3,2 0) 0 Ea
©, 3) 0 0 1 0
1, 3) 0 0 24 i
2,3 0 0) %
(3,3 0 0 0 1

This means that the color representations of the image
block illustrated in FIG. 3 and having assigned color weights
according to Table 1 above will have red components
according to Table 2 below.

US 9,466,125 B2

9
TABLE 2

10

color combinations

Ro 2 1 1 2
§R0 + §R1 §R0 + §R1
2R +1R 4R +2R +2R +1R 2R +4R +1R +2R
FRotzRe gRo+gRi+gRe+5Rs gRotgRi+glatghs
1R +2R 2R +1R +4R +2R 1R +2R +2R +4R
FRotzRe gRo+gRi+gRe+5Rs gRotgRi+glatghs
R, 2 1 1 2
§R2 + §R3 §R2 + §R3

3

3

2 1
=R; +=R3

1
=R; +=R3

R,

3

2
3

Rs

The blue and green components are preferably handled in
the same way, i.e. basically by exchanging R, with B, or G,
where z=0, 1, 2, 3.

As can be seen from Table 2, the red (green and blue)
color components of twelve of the image elements are
derivable as weighted linear combinations of at least of the
color values (R, R;, R,, R;) represented by the four color
codewords. However, the red (green and blue) color com-
ponents of the four corner image elements are each derived
directly from one of the color values.

In this embodiment, when one move along the first row
(R, to R)), the third row (R, to R;), the first column (R, to
R,) and the third column (R, to R;) in Table 2, the red color
component of the color representations of the image ele-
ments in these rows and columns change monotonically
(unless the two end values are equal). For example, if
R,>R,, the red component value increases monotonically
along the first row, i.e. when moving from image element
(0,0) to image element (0,3). Correspondingly, if R,<R,, the
red component value decreased monotonically along the
First column (from image element (0,0) to (3,0)). If the same
color weights are used also for the green and/or blue color
components also these will change monotonically for these
row and columns. In the present invention, a row or column
is denoted “one-dimensional array of image elements”. This
means that at least one color component of color represen-
tations change monotonically along at least one one-dimen-
sional array of image elements. This allows for smooth
transitions of colors and therefore image blocks having such
color distributions can be represented by the present inven-
tion at a high image quality.

FIG. 4 illustrates a compressed representation 700 of the
image block illustrated in FIG. 3 that has been compressed
according to an embodiment of the present invention. The
representation 700 (encoded or compressed image block)
comprises a first color codeword 710, a second color code-
word 720, a third color codeword 730 and a fourth color
codeword 740. Note that the mutual order of the codewords
710, 720, 730, 740 of the encoded image block 700 may
differ from what is illustrated in the figure.

The color weights assigned to image elements in the block
are in this case pre-defined and will be used for all image
blocks of the image compressed according to this embodi-
ment of the present invention. This means that if all image
blocks of an image are compressed according to the present
invention, the color weights listed in Table 1 will be used for
all image blocks. However, note that the four color code-
words can be different for different blocks, thereby effec-
tively resulting in different color representations for the
image blocks.

It is however anticipated by the present invention that
information of the color weights assigned to image elements
in the image block can be included as a part of the com-

20

25

30

35

40

45

50

55

60

65

pressed block representation 700. For example, assume that
there exist multiple weight sets that can be used for the
image blocks. Each such weight set then comprises color
weights assigned to image elements of at least one subset of
the elements in the block. A first such weight set can include
the color weights listed in Table 1 above. A second set can
then have different weights for at least one of these image
elements. In such a case, the compressed block representa-
tion 700 preferably comprises a weight set index or weight
codeword representing the color weight set used for the
current image block. A single bit (0,,,, and 1,,) can be used
as weight codeword to discriminate between two weight
sets, whereas two or more bits are required if more than two
sets are available. In such a solution, different image blocks
of'an image can be compressed using different color weight
distributions.

If 64 bits are assigned for the compressed image block
700, 16 bits can be used per color codeword 710, 720, 730,
740 and each color codeword 710, 720, 730, 740 can be in
the form of RGB565. More bits are preferably spent on the
green components since the green component gives a dis-
proportionate contribution to the perception of intensity.

However, the present invention is, as will thoroughly be
discussed herein, preferably used as an auxiliary mode to the
iPACKMAN/ETC scheme mentioned in the foregoing. In
such a case, only 57 bits are available for encoding the four
color codewords 710, 720, 30, 740 (the remaining seven bits
will be used as mode index for discriminating between this
auxiliary mode, iPACKMAN/ETC and other auxiliary
modes). Four color codewords 710, 720, 730, 740 with three
components each need to be encoded using only 57 bits and
a possible solution could be to use a RGB554 format,
resulting in 56 bits in total. The remaining bit can be used as
weight codeword or boost one of the color components of
one of the codewords 710, 720, 730, 740.

The embodiment present in FIGS. 3 and 4 and Table 1 has
a drawback in that the color resolution obtainable for the
color codewords 710, 720, 730, 740 is rather low, especially
when employing the present invention as a complement to
IPACKMAN/ETC and each codeword 710, 720, 730, 740 is
in the format of RGB554. In this case, particularly the low
resolution of the blue component will give rise to artifacts.

In preferred implementation of the present invention, a
plane is instead preferably used to approximate the color
surface and provide the color weights instead of bilinear
function. This is schematically illustrated in FIG. 5. Com-
pared to FIG. 3 and the bilinear embodiment described
above, only three color codewords are determined per image
block 600. This means that three color values are repre-
sented by these codewords and in FIG. 5, the red compo-
nents (R,, Ry, R;) of these color values have been illus-
trated.

US 9,466,125 B2

11
The color representations and color weights of the image
elements 610 in the image block 600 can be calculated using
the following formula:

x y o Xy

R(x,y)=z(Ry —Ro)+ Z(Ry —Ro)+ Ry Wy =1-2-%
3 3 3
X y xy

G,) = 5(Gn = Go) + 5(Gy = Go) + Go wyy =

X y xy
B(x, y) = §(BH - By) + g(Bv —Bo)+By wy =

This means that the color representations of the image
elements 610 in positions (0,0), (0,3) and (3,0) can be
directly selected from the color values represented by the
three codewords, resulting in (R, G, B,) for image element
(0,0), Ry, Gy, By) for image element (3,0) and (R, Gy,
B,) for image element (0,3) in this illustrative example. This
corresponds to the following color weights to the these
image elements w°°=[1 0 0], w>°=[0 1 0] and w**=[0 0 1].

The color weights assigned to image blocks compressed
according to this embodiment of the present invention are
distributed among the image elements according to the Table
3 below.

TABLE 3

color weights

10

15

20

25

30

12

The blue and green components are preferably handled in
the same way, i.e. basically by exchanging R, with B, or G,
where z=0, 1, 2, 3.

Also in this case the color components increase or
decrease monotonically when moving along the first row
and first column in Table 4.

FIG. 6 illustrates a compressed representation 700 of the
image block illustrated in FIG. 5 that has been compressed
according to this embodiment of the present invention. The
representation 700 (encoded or compressed image block)
comprises a first color codeword 710, a second color code-
word 720 and a third color codeword 730. Note that the
mutual order of the codewords 710, 720, 730 of the encoded
image block 700 may differ from what is illustrated in the
figure.

The color codewords 710, 720, 730 can now be repre-
sented by the RGB676 color quantization, resulting in a total
size for the three codewords of 57 bits. This means that this
embodiment can advantageously be used as a complement
and auxiliary mode to iPACKMAN/ETC as described
above. RGB676 allows for a higher resolution as compared
to the previous (RGB554) embodiment. Alternatively, if the
present invention is used as a stand-alone scheme, the color
codewords 710, 720, 730 can be represented as RGB777 and
the remaining bit can be used as e.g. weight codeword or
boost a color component of one of the codewords 710, 720,
730.

Instead of employing three color codewords 710, 720, 730
allowing calculation of a color value directly from a code-
word 710, 720, 730, so-called differential codewords can be
used. In such a case, the first color codeword 710 can be
determined as described above, i.e. comprising three quan-
tized color components, e.g. in the form of RGB777. The
first color value (R,, G,, B,) can then be obtained directly
from this first codeword 710 by expanding the quantized
color components. The other two codewords 720, 730
instead code a distance in color space from this first color
value. Thus, the two codewords 720, 730 could represent
dR,dG,dB.666 and dR,dG,dB 666, where each of the
components dW,, W—R, G, B and z=H, V, represents a
number in the interval [-31, 32]. The other two color values
are then obtained according to the following formula:

Ryr=Ro+dRey
GurtGotdGpyy

Bryy=Bo+dBryy

Position (x, y) Color 0 Color H Color V
(0, 0) 1 0 0
(1, 0) EE Vs 0
(2,0)) Ea 0 35
(3, 0) 0 1 0
0, 1) EE 0 Vs
(1,1 Vs Vs Vs
@1 0 % %
3, 1) - 1)
0, 2) Vs 0 EE
(1, 2) 0 V4 % 40
2,2) - Ea Ea
(3,2) - 1 Ea
(0, 3) 0 0 1
(1, 3) -) 1
2,3) - Ea 1
(3,3) -1 1 1 45
This means that the color representations of the image
block illustrated in FIG. 5 and having assigned color weights
according to Table 3 above will have red components
according to Table 4 below.
TABLE 4
color representations
Ry 2 1 1 2 Ry
§R0 + §RH §R0 + §RH
2 1 1 1 1 2 1 1 1
§R0 + §RV §R0 + §RH + §RV §RH + §RV —§R0 +Ry + §RV
1 2 1 2 1 2 2 2 2
§R0 + §Rv §RH + §Rv —§R0 + §RH + §Rv —§R0 +Ry + §Rv
Ry -Ro +Rp+ Ry

1 1 2 2
—§R0+§RH +Ry —§R0+§RH +Ry

US 9,466,125 B2

13

The embodiments described in connection with FIGS. 3
and 5, however, have a few drawbacks. Firstly, several of the
assigned color weights involve division by three or powers
of three (9=3%), which is rather expensive to perform when
implementing the decompression in hardware. Another
drawback with these patterns and color weight assignments
is that it is difficult to create ramps of constant slope. For
example, if R, G, B, in one block is set to R, G,, B, in
the previous block, there will be two image elements having
a same color representation next to each other, breaking the
slope. Thus, although smooth color transition can be repre-
sented at a high quality within a given block, it is more
difficult to encode such a smooth color transition over
neighboring image blocks.

FIG. 7 illustrates an embodiment of the present invention,
where the color weight assignment is performed in a way to
solve the two drawbacks mentioned above. In this embodi-
ment, the color weights are preferably selected so that only

5

10

15

14
TABLE 5-continued

color weights

Position (x, y) Color 0 Color H Color V
(2,0) Ya Ya 0
(3,0) Ya B 0
o, 1 Ya 0 vy
(1, 1) Ya Y Ya
2,1 Ya %) Ly
3G, 0 B Ya
0, 2) Ya 0 Ya
(1, 2) Ya Y Ya
2,2) 0 Vs Vs
(3,2) Y4 Ya Ya
©, 3) Ya 0 3
(1, 3) 0 Y Ya
2,3) =Y Vs ¥
(3,3) - Ya s

This means that the color representations of the image
block illustrated in FIG. 7 and having assigned color weights
according to Table 0.5 above will have red components
according to Table 6 below.

TABLE 6

color representations

3 1
-Ro + =Ry

i)

1 1
—Ro + =Ry

2 2

1 3
-Ro + =Ry

19071

3 1 1 1 1 3
ZRO + ZRH ERO + ERH ZRO + ZRH
1 1 1 1 1 1 3 1
ERO + ZRH + ZRV ZRO + ERH + ZRV ZRH + ZRV
1 1 1 1 1 1 3 1
ZRO + ZRH + ERV ERH + ERV _ZRO + ZRH + ERV
1R 3R 1R 1R 3R 1R 3R 3R
gRa+gRv —gRo+sRu+gRy - —gRo+ Ry + 3Rk

a single image element 610 in the block 600 has color
weights constituting of a 1 and the rest 0. This means that
this single image element 610, preferably a corner image
element, has its original color represented by a color value
derived from only one of the three color codewords.

The way of positioning the color values as illustrated in
FIG. 7, results in the following formula for calculating the
color representations and color weights of the image ele-
ments 610 in the image block 600:

x
wy =1-=—

x y
R(X,y)=Z(RH—R0)+Z(RV—R0)+R0 7

P

X Y x
Glx, y) = 3G = Go) + 3(Gy = Go) + Go Wi =

Bl b=

_x y X _
B(x, y) = Z(BH - By) + Z(BV —Bo)+By wy =

The color weights assigned to image blocks compressed
according to this embodiment of the present invention are
distributed among the image elements according to the Table

5 below. TABLE 5

color weights

Position (x, y) Color 0 Color H Color V

0, 0) 1 0 0
(1, 0) Ya Y 0

40

45

50

55

60

65

The blue and green components are preferably handled in
the same way, i.e. basically by exchanging R_ with B_ or G,
where z=0, 1, 2, 3.

Also in this case, the color components increase or
decrease monotonically when moving along the first row
and first column in Table 6.

The compressed block representation for this embodiment
is illustrated in FIG. 6 and the discussion in connection with
this figure also applies to this embodiment.

In this embodiment, the color weights involve division by
two or four, which is trivial to implement in hardware. In
addition, the embodiment allows for continuity of color
slope (color transitions) over block limits. This is possible
by setting R, (or R;) in one block to R, of the previous
block, which results in a perfect slope. A further advantage
of this embodiment is that the precision of the color repre-
sentations that are derivable from the color codewords and
the color weights increases further since the color can
change in steps of ¥4 instead of V5 with each image element.

Further embodiments based on the same theme as FIG. 7
can be obtained by rotating the positions of Ry, R and R,
a quarter, a half or three quarters of a turn, respectively.

Generally, in a more general context, the color weights
assigned to the image elements according to the present
invention can be selected so that the color values represented
by the color codewords could be regarded as all positioned
within the image block ((see FIGS. 3 and 5), some are
positioned within the image block and some are positioned
outside the block (see FIG. 7) or all could be positioned

US 9,466,125 B2

15

outside the block. The relative position of the color values in
relation to the block defines the (planar) equation used for
obtaining the color weights for the image elements. In a
most preferred embodiment of the present invention, all the
color values are not positioned on a same line (column/row)
in the block.

It is anticipated by the present invention that color
weights can be selected to represent positions of the color
values in the block 600 so that the color values or points are
not positioned in the middle of image elements 610 which is
schematically illustrated in FIG. 8.

The formula for the plane will then be:

R(x,p)=2x(Rg~Ro)-2¥(Ry~Ro)+Ro3R 3Ry
G(x,9)=2x(G g~ Go)-20(Gy— G+ Go=3Gy+3Gyr
B(x,9)=2x(B~Bo)-2y(By~Bo)+Bo3B+3B 1

and the color weights are represented by the equations:
wg¥=1-2x+2y
WgP=-3+2x
wy?r=3-2y

The color weights assigned to image blocks compressed
according to this embodiment of the present invention are
distributed among the image elements according to the Table
7 below.

TABLE 7

color weights

Position (x, y) Color 0 Color H Color V
0, 0) 1 -3 3
(1,0) -1 -1 3
2,0) -3 1 3
(3,0) -5 3 3
0, 1) 3 -3 1
(1,1 1 -1 1
2,1 -1 1 1
3G, -3 3 1
0,2) 5 -3 -1
(1,2) 3 -1 -1
2,2) 1 1 -1
(3,2) -1 3 -1
©, 3) 7 -3 -3
(1, 3) 5 -1 -3
2,3) 3 1 -3
(3,3) 1 3 -3

The present invention, thus, involves assigning color
weights to some or all image elements in the block and then
determining color codewords based on the weights, where
color representations of the image elements are derivable
from weighted, using the weights assigned to the image
elements, combinations of color values represented by the
codewords. This concept can of course be extended to
different number of multiple color codewords and different
color weight assignments. In a preferred implementation, at
least one weight of at least one image element is different
than 0, 1 and -1. Thus, employing three color codewords,
means that color weights can be assigned so that a planar
interpolation of color values is possible. If instead four or
five codewords are employed for an image block, bilinear
and Gaussian interpolation can be used, respectively. In the
preferred implementation, the color weights are set to reflect
that at least one of the color values represented by color
codewords can be regarded as placed outside of the image
block. This allows for good approximation of very slowly

10

15

20

25

30

35

40

45

50

55

60

65

16

varying color slower than if all color values are regarded as
places inside the block (compare FIG. 5 and FIG. 7).

FIG. 9 is a flow diagram illustrating an embodiment of the
determining step of FIG. 1 in more detail. The method
continues from step S2 of FIG. 1. In step S10 candidate color
codewords that are representations of candidate color values
are selected. These candidate codewords can be selected
randomly or be the smallest or largest possible candidate
color codewords, such as a sequence of 19 0,,, (smallest
possible codeword, representing color value (0, 0, 0)) or a
sequence of 19 1,,, (largest possible codeword, representing
color value (255, 255, 255)). The three color components R,
G, B can be determined separately, i.e. basically running
three parallel or subsequent processes. The discussion below
is therefore limited to only one color component.

In a next step S11, the red color representation compo-
nents for the image elements in the block obtained with this
selection of candidate color codeword components is cal-
culated using the assigned color weights. This corresponds
to replacing R,, R, and Ry, (R, Ry, R,, R; and R,) in the
image blocks disclosed above with the red components of
the candidate color value. The error of representing the red
component of the image elements with these candidate color
representation components are then estimated in step S11.

R 2
_R?

&= [ws wi wy | Ry

Ry

In the error formula above, R, R, R, represent the red
component of three candidate color values represented by
the three selected candidate color codeword components and
R™ is the original red color of the image element in position
(x,y) within the block. In the formula above, the color
weights and original color is image element specific,
whereas the candidate color values are the same, for a given
selection of candidate codeword components, for all image
elements in the block. The calculated error value is then
stored in an error memory in step S12 together with a
notification of the selected candidate color codewords.

The steps S10 to S12 are repeated for different selections
of candidate color codeword components and if the esti-
mated error value is smaller than the error value stored in the
error memory, the new error value replaces the stored value
and the candidate codeword components used for calculat-
ing this new smaller error value likewise replace the previ-
ously stored candidate codeword components.

This procedure is performed for all possible 18 bits for the
red candidate components, resulting in 2'® steps. In addition,
the procedure is performed for the green and blue color
components, which in total involves 2'%+2*°+2'® operations.
The respective red/green/blue codeword components result-
ing in the smallest error values are selected in step S13 and
used as color codewords according to the present invention.
The method then continues to step S4 of FIG. 1.

In another embodiment, a least square approach is taken
instead of an exhaustive search. This can be represented in
matrix form according to below:

7% 00 00 . 00
R wo Wy Wy
_ Ry
7L WIO wlo 4l
= Ry
Ry
533 33 3,33
R) W?-l wy

US 9,466,125 B2

17

This can also be written as y=AX, where y is a vector
comprising the 16 original red components of the image
elements in the block, A is a matrix comprising the 3x16=48
color weights assigned to the image elements and X is a
vector comprising the red components to be determined and
quantized into red components of the color codewords.
Thus, the vector X should be determined. This can be done
according to the equation below:

x=(4Tay 4%y

The same procedure is also performed for the green and
blue color components.

It is anticipated by the present invention that other tech-
niques besides exhaustive search and least square can be
used to determine the at least two codewords per image
block according to the present invention.

As has been discussed in the foregoing, the present
invention is advantageously used as a complement or aux-
iliary mode to the iPACKMAN/ETC compression scheme.
In such a case, the present invention will be used for
compressing and decompressing image blocks having
slowly varying color transitions and in particular when there
is a color slope extending over several neighboring blocks.
For other image blocks, iIPACKMAN/ETC may instead be
used or another auxiliary mode.

FIG. 10 schematically illustrates such an implementation.
The method continues from step S1 of FIG. 1. The provided
image block to be compressed is then processed according
to different schemes, typically in parallel. In other words, the
image block is in step S20 compressed according to a first
compression mode to generate a first compressed block
representation. In a next step S24, an error value represen-
tative of representing the image block with this first com-
pressed block is estimated. In addition, the same image
block is further compressed according to at least one other
compression mode, three other modes in the figure. Thus, a
second, a third and a fourth compression mode is used for
compressing the block in S21, S22 and S23 to generate a
second, a third and a fourth compressed block representa-
tion, respectively. In steps S25, S26 and S27, error values
representative of representing the block with the second,
third or fourth compressed block representation are esti-
mated. Now four (or in alternative embodiments two, three
or more than four) different compressed representation are
available. In the next step S28, one of these four compressed
representations is selected and used as compressed version
of the current block. This selection step is performed based
on the error values calculated in the steps S24-S27. Thus, the
compressed representation associated with the smallest error
value will be selected in step S28. In a next step S29, a mode
index representative of the compression triode used for
generating the selected compressed representation is pro-
vided and is included in the compressed image block, i.e. in
the bit sequence representing the image block. This proce-
dure is preferably performed for each image block to be
compressed. The method then ends.

This means that each image block of an image is prefer-
ably analyzed and compressed individually, which in most
typical applications (depending on the actual image to be
encoded), results in a mosaic of image blocks compressed
according to the different modes. Thus, a first set of the
image blocks is compressed according to the first mode, a
second set of the blocks is compressed according to the
second mode, a third block set is compressed according to
the third mode and a fourth block set is compressed accord-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

ing to the fourth mode. For other applications only one, two
or three of the modes will be used for the different image
blocks.

In this embodiment, a compressed candidate block is
generated per available compression mode. However, in
another embodiment, the selection of compression mode to
use for a current is block is performed prior to the actual
block compressions. In such a case, a first analyzing step is
performed where the original colors of the image elements
in the block and in particular their distribution in color space
is investigated and analyzed. The selection of compression
mode is performed based on this analysis.

This embodiment is possible since, as will be discussed
further below, the different available compression modes are
particularly suitable and effective for given block types. For
example, the scheme of the present invention is effective in
handling blocks with slowly varying color transitions. The
iPACKMAN/ETC scheme is very efficient for handling
image blocks where the colors of the image elements have
rather similar chrominance but varying luminance. A third
possible scheme could be THUMB [8], which also can be
used as auxiliary mode to iPACKMAN/ETC. This scheme
has two modes or so-called patterns, which are adapted for
managing image blocks having two distinct chrominances
(colors).

This embodiment has the advantage that only one and not
four compressed candidate blocks need to be generated,
though at the cost of a block and color analysis and a risk of
selecting a non-optimal compression scheme.

In FIG. 10, the first compression step S20 can represent
the steps S2 to S4 of FIG. 1, i.e. assigning color weights,
determining color codewords and representing the original
colors of the image elements.

FIG. 11 is a flow diagram illustrating different embodi-
ments of the other compression steps S21, S22 and S23 of
FIG. 10 according to the iPACKMAN/ETC and THUMB
schemes.

Starting with THUMP, the method continues from step S1
in FIG. 1. In a next step S30, a first and a second color
codeword are determined. The first color codeword is a
representation of a first color value and the second color
codeword is likewise a representation of a second color
value. The first and second color values are located on a first
line in color space, preferably RGB space. This first line also
has a first direction. In a next step S31, a color modifier
codeword is provided. This modifier codeword is a repre-
sentation of at least one color modifier applicable for modi-
fying the first color value along a second line having a
second direction in color space. By modifying the first color
value with the at least one color modifier, multiple color
representations are obtained along the second line. In this
embodiment, the second direction is different from the first
line, i.e. the first line and second line are not parallel.

A color index associated with a color representation
selected, in step S32, from 1) the multiple color representa-
tions along the second line and ii) at least one color
representation based on the second color value. This index
selecting step is preferably performed for each image ele-
ment in the block, which is schematically illustrated by the
line L4.

The resulting compressed block representation of this
mode will, thus, comprise the first and second color code-
words, the color modifier codeword and a sequence of color
indices.

The above-described THUMB scheme can actually, in
turn, be run according to two modes or patterns, depending
on how the colors of the image elements are distributed in

US 9,466,125 B2

19

color space. This means that THUMB occupies two of the
four different modes in FIG. 10, FIGS. 12-14B disclose in
more detail the usage of THUMB. In FIG. 12A the original
(16) colors of image elements in a block to be compressed
are depicted in color space. It is clear from the figure that the
colors are positioned in two clusters 2, 4, each containing
multiple colors. Such a color distribution is advantageously
handled with the H-pattern/mode of THUMB, which is
illustrated in FIG. 12B.

In FIG. 12B, the first color value 10 represented by the
first color codeword and the second color value 20 repre-
sented by the second color codeword are located on a first
line 40 having a first direction 45. Two color representations
30, 32 are derivable from the first color value 10 using a
color modifier represented by the color modifier codeword.
These two color representations 30, 32 and the first color
value 10 are positioned on a second line 12 having a second
direction 15, which second direction 15 is different from the
first direction 45. In this H-pattern/mode, a color modifier
represented by the color modifier codeword is likewise used
for modifying the second color value 20 to obtain two color
representations 31, 33. These two color representations 31,
33 and the second color value 20 are positioned along a third
line 22, having a third direction 25. In the illustrated
example, the second 15 and third 25 directions are parallel.

The color indices selected for the image elements are then
associated with one of the four color representations 30, 31,
32,

FIG. 13A is a corresponding diagram of an original color
distribution effectively handled by a T-pattern/mode of
THUMB. In the figure, the colors are positioned in two
clusters 2, 4 similar to FIG. 12A. However, contrary to FIG.
12A, one of the clusters 4 has a general circular shape
instead of elliptical.

FIG. 13B illustrates how THUMB handles such a situa-
tion. The first 10 and second 20 color values are positioned
on the first line 40 having the first direction 45. The first
color value 10 is modified by a color modifier to generate a
first 30 and a second 32 color representation positioned on
the second line 12 having the second direction 15. In this
pattern/mode, the color representations available for the
image elements are the first 30 and second 32 color repre-
sentation, the first color value 10 and the second color value
20. Each color index selected for the image elements is
associated with one of these four possible representations.

If instead the iPACKMAN/ETC scheme is employed in
step S22 of FIG. 10, a first color codeword is determined in
step S30 as a representation of a first color value. In this step
S30, a second color codeword is also determined. However,
this second codeword is a representation of a differential
color. A second color value is then obtainable as a sum of the
first color value and the differential color. Image elements in
a first sub-block (2x4 or 4x2 image clements) are assigned
the first color value whereas image elements in a second
sub-block (2x4 or 4x2 image elements) are assigned the
second color value.

An intensity codeword is provided in step S31, where the
intensity codeword is a representation of a set of multiple
intensity modifiers. These intensity modifiers are applicable
for modifying the intensity of the first or second color value
to generate multiple color representations. In a preferred
implementation, the intensity codeword is a table index to an
intensity table comprising multiple modifier sets, where the
modifier sets have different intensity modifiers. In step S32,
an intensity index is selected for each image element in the

10

15

20

25

30

35

40

45

50

55

60

65

20

block, where the intensity index is associated with an
intensity modifier from the intensity modifier set represented
by the intensity codeword.

FIG. 14 schematically illustrates a possible compressed
block representation 700 for the iPACKMAN/ETC differ-
ential mode. The compressed block 700 includes the first
color codeword 710 including three color components, red
712, green 714 and blue 716, preferably each represented by
five bits. The second color or differential color codeword
720 likewise includes three components, red 722, green 724
and blue 726, preferably each represented by three bits. The
compressed block 700 further includes two intensity code-
words 750A, 750B, one for each 2x4/4x2 sub-block, pref-
erably each of 3 bits. A sequence 760 of intensity indices,
preferably one 2-bit intensity index per image element in the
block, is also included in the compressed block 700, result-
ing in 32 bits. A flipbit 770 defines whether the two sub
-blocks of the image block is two 2x4 block or two 4x2
blocks, i.e. placed vertically flipbit=0,,, or horizontally
flipbit=1,,,. iIPACKMAN/ETC comprises two so-called
default modes, of which one has been described and dis-
closed in the present document. A diffbit 780 discriminates
between these two default modes. In FIGS. 14 to 17, this
diftbit 780 is equal and set to 1,,, (or 0,,,). Note that the
mutual order of the codewords 710, 720, 750A, 750B, index
sequence 760, flipbit 770 and diftbit 780 of the encoded
image block 700 may differ from what is illustrated in the
figure. The total size of the compressed block is 64 bits.

In the iPACKMAN/ETC mode mentioned above, the
color components 712, 714, 716 of the first color codeword
710 preferably each comprises 5 bits, basically representing
any vale in the interval 0-31 (00000,,,-11111,,). The com-
ponents 722, 724, 726 of the second codeword 720 prefer-
ably each comprises 3 bits, which are used for representing
a value in the interval —4 to +3. The color components of the
second color value is obtainable by summing the compo-
nents 712, 714, 716; 722, 724, 726 of the two codewords:

Red component=R+dR.
Green component=G+dG

Blue component=B+dB

Since these color components represent intensity infor-
mation, they are allowed to assume the values from O (no
intensity) to 31 (full intensity). This means that bit combi-
nations of the first color codeword 710 and the second color
codeword 720 that result in that the additions R+dR, G+dG,
B+dB will overflow, i.e. be <0 or >31 will never be used by
the encoder operating in this iPACKMAN/ETC mode. This
allows for introducing three auxiliary modes that can be
used to complement iPACKMAN/ETC.

In the first auxiliary mode, the red component overflows,
ie. R+dR is smaller than zero or larger than 31. This
happens if the first three bits of the red component 712 of the
first color codeword 710 are equal and different from the first
bit of the red component 722 of the second color codeword
720.

In FIG. 15, this principle is employed for using the
H-pattern/mode of THUMB as an auxiliary mode to iPACK-
MAN/ETC. Thus, in this mode four bits 790 cannot be
selected freely since the red components must overflow,
which happens if these four bits 790 are equal to 1110,,, or
0001,,,. The compressed block representation 700 is pref-
erably in total 64 bits, of which four has been used according
to above. The remaining 60 bits are preferably divided
between the including parts according to; 4 bits are assigned

US 9,466,125 B2

21

to each color component 712, 714, 716; 722, 724, 726 of the
first 710 and second 720 color codewords. The color modi-
fier codeword 750 comprises three bits, the diftbit 780 one
bit (which has the same value as in FIG. 14) and the color
index sequence 760 preferably 32 bits.

A second auxiliary mode is obtainable if the green com-
ponent overflows, i.e. G+dG is smaller than zero or larger
than 31 and the red component is not allowed to overflow,
i.e. 0=sR+dR<31. In this mode, the first bit of the red
component 712 of the first color codeword in FIG. 14 is set
different from the second or third bit of the red component
712. In addition, the first three bits of the green component
714 of the first color codeword 710 must be equal and
different from the first bit of the green component 724 of the
second color codeword 720.

In FIG. 16, bit0 (corresponds to first bit of red component
in first color codeword in FIG. 14), bit8-bit10 (correspond to
three first bits of green component in first color codeword in
FIG. 14) and bitl3 (corresponds to first bit of green com-
ponent in second color codeword in FIG. 14), collectively
represented by 790 in the figure, cannot be set freely.
Therefore, 59 bits remain to use for the other parts of the
compressed block 700. The division of bits among the color
codewords 710, 720, color modifier codeword 750, diffbit
780 and color index sequence 760 is preferably the same as
for FIG. 15 except that the color modifier codeword 750 in
this case only comprises two bits instead of three.

A third auxiliary mode using the scheme of the present
invention is available if the blue component overflows, i.e.
B+dB is smaller than zero or larger than 31, but the red and
green components are not allowed to overflow. This means
that the first bit of the red 712 and green 714 component of
the first color codeword 710 in FIG. 14 must differ from the
second or third component in the red 712 and green 714
components. In addition, the blue component overflows, i.e.
B+dB is smaller than zero or larger than 31.

In FIG. 17, therefore bit0 (corresponds to first bit of red
component in first color codeword in FIG. 14), bit8 (corre-
sponds to the first bit of green component in first color
codeword in FIG. 14), bit16-bit18 (correspond to three first
bits of blue component in first color codeword in FIG. 14)
and bit21 (corresponds to first bit of blue component in
second color codeword in FIG. 14), collectively denoted
790, cannot be set freely. The red 712, 722, 732 and blue
716, 726, 736 components of three color codewords 710,
720, 730 are preferably assigned 6 bits each, whereas the
corresponding green components 714, 724, 734 comprise 7
bits each and the diftbit 780 is one bit. This amounts, in total,
to 64 bits.

If the four different compressed representations illustrated
in FIGS. 14-17 are possible, a mode index used for dis-
criminating between the four modes preferably includes
defined positions in the bit sequences. These bit positions
include the three first bits of the red, green and blue
component of the first color codeword and the first bit of the
red, green and blue component of the second color codeword
in FIG. 14. In addition, the diffbit is preferably used to
discriminate between the other available iPACKMAN/ETC
mode. Note, however, that some of the bits of this mode
index can be used for encoding the compressed block in the
different modes.

Decompression

FIG. 18 illustrates a flow diagram of a method of decod-
ing an encoded image or encoded version of an original
image according to the present invention. The encoded
image basically comprises several encoded representations

30

40

45

50

55

22

of image blocks. These encoded block representations are
preferably generated by the image encoding method dis-
cussed above.

The method generally starts by identifying encoded image
block(s) to decode. It could be possible that all encoded
image blocks of an encoded image should be decoded to
generate a decoded representation of the original image.
Alternatively, only a portion of the original image is to be
accessed. As a consequence, only a selected number of
image blocks have to be decoded (or more precisely, a
selected amount of image elements of certain image blocks
have to be decoded).

Once the correct encoded (representation(s) of) image
block(s) is identified, step S40 determines at least two color
values based on the at least two color codewords in the
compressed block representations. In a preferred implemen-
tation, this determining step involves expanding the quan-
tized color of the color codeword, such as RGB676, into,
preferably, 24 bits (RGB888). If the second color codeword
comprises differential color components, these components
are preferably added to corresponding components of the
first color codeword before expansion to generate a second
color value. In a preferred implementation of the present
invention, the compressed block representation comprises
three color codewords. This means that three color values
are determined in step S40 by extending each of the code-
word.

The following to steps S41 and S42 are performed for
each image element that is to be decoded, which is sche-
matically illustrated by the line L5. In step S41, the color
weights assigned to the image element to be decoded is
provided. The color weights are preferably pre-defined
weights, which depend on the actual position of the image
element in the blocks:

wo” =fox.y)
Wi ~fo®.y)

Wi =fo(x.y)

Thus, all image blocks of the image compressed accord-
ing to the present invention has preferably the same assign-
ment of color weights so that an image element in, for
example, position (2,1) in a first block will have the same
color weights as an image element in position (2,1) in a
second block.

However, it is anticipated by the present invention that
there might be choice in the weight assignment that is
performed block by block. In such a case, the compressed
representation preferably comprises a weight codeword.
This means that the weight provision in step S41 is then
performed based on the weight codeword, i.e. the set of
color weights used for the current block is identified based
on the weight codeword.

In a next step S42, the color representation used for
representing the original color of the image element to be
decoded is calculated based on the provided color weights
and the determined at least two color values. In a preferred
implementation, the color representation is calculated as
weighted, using the provided weights, (linear) combination
of the determined color values. In this context, all the color
values are preferably used in the calculation, but it could be
possible to use only a subset thereof.

Steps S41 and S42 could be performed for several image
elements in the image block (schematically illustrated by
line L5). It is anticipated by the invention that in some
applications, only a single image element is decoded from a

US 9,466,125 B2

23

specific image block, multiple image elements of a specific
image block are decoded and/or all the image elements of a
specific block are decoded.

Steps S40 to S42 are then preferably repeated for all
image blocks that comprise image elements that should be
decoded (schematically illustrated by line 1.6). This means
that the loop of steps S40 to S42 could be performed once,
but most often several times for different encoded image
blocks and/or several times for a specific encoded image
block.

In the optional step S43, a decoded representation of the
original image, or a portion thereof, is generated based on
the decoded image elements and blocks. The method then
ends.

FIG. 19 is a flow diagram of a multi-mode implementa-
tion of the image and block decoding/decompression of the
present invention. The method starts in step S50, where a
decompression mode to use for the current block is selected
based on a mode index. If the four different compressed
representations illustrated in FIGS. 14-17 are possible, the
mode index includes the diftbit, the three first bits of the red;
green and blue component of the first color codeword and
the first bit of the red, green and blue component of the
second color codeword in FIG. 14. Thus, the decoder
investigates these bit positions in the bit sequence that
constitutes the compressed block representation and selects
which decompression mode based on the investigated bits.
In a preferred implementation, a first compression mode is
selected if the blue color component overflows but not the
red and greens. A second and a third mode, is selected if the
red component overflows or the green component overtlows
but not the red. If none of the components overflow, a fourth
mode is selected in step S50.

If the first mode is selected in step S50, the method
continues to step S51, where the block is decompressed
according to this mode. This corresponds to performing the
steps S40-S42 illustrated in FIG. 18. If a second, third or
fourth mode is instead selected, the method continues to step
S52, S53 or S54.

FIG. 20 illustrates the decompression performed accord-
ing to the THUMB mode. Starting in step S60, a first color
value is determined based on the first color codeword. A
second color value is determined based on the second color
codeword in the step S61. These two color values are located
on a first line having a first direction in color space (see
FIGS. 12B and 13B). The color determinations of steps S60
and S61 preferably involve expanding the bit sequence of
the codewords to generate the color values. A next step S62
generates multiple color representations along a second line
having a second direction in color space by modifying the
first color value with at least one color modifier represented
by the color modifier codeword. This second direction is
different from the first direction. The next step S63 is
performed per image element to be decoded, which is
schematically illustrated by the line L7. This step S63
involves selecting, based on the color index sequence and
more precisely the color index assigned to the relevant
image element, a color representation from i) the multiple
color representations along the second line and ii) at least
one color representation bases on the second color value. In
the H-pattern/mode, at least one color modifier provided
based on the modifier codeword is also used for moditying
the second color value along a third line having a third
direction (different from the first direction) to generate
multiple color representations. Thus, two sets of multiple
color representations (one located on the second line and the
other located on the third line) are available in this H -pattern

10

15

20

25

30

35

40

45

50

55

60

65

24

and the color index of the image elements points to one of
the representations in the two sets. In the T-pattern/mode, the
multiple color representations on the second line are
complemented with the first and second color value that can
also be selected as color representations for the image
elements. The method then continues to step S43 of FIG. 18.

If instead the iPACKMAN/ETC mode is selected based
on the mode index, a color value is determined based on the
first color codeword or the first and second color codeword
in step S70 of FIG. 21. The color value is, if the image
element to be decoded is present in a first (2x4/4x2) sub-
block, determined based on the first color codeword, pref-
erably by expanding the bit sequence of the codeword from
RGBS555 into RGB88Y. If the image element is instead is
present in a second (2x4/4x2) sub-block, the color value is
determined based on both the first and second color code-
word, basically by adding the red components, green com-
ponents and blue components of the first and second code-
words and then expanding the result into RGB888 (or
alternatively first expanding the codeword components and
then adding them). The compressed block comprises, in this
mode, two intensity codewords, one per sub-block. The
intensity codeword assigned to the sub-block comprising the
image element to be decoded is used in step S71 to provide
a set of multiple intensity modifiers. This step preferably
comprises providing, based on the intensity codeword, the
modifier set from a table comprising multiple such modifier
sets. An intensity modifier to use for the image element is
selected in step S72 from the provided modifier set based on
the intensity index assigned to the image element. In the next
step S73, the determined color value is intensity modified by
the selected modifier to generate a color representation for
the image element. The steps S70 to S73 are preferably
repeated for all image elements in the block that are to be
decoded. The method then continues to step S43 of FIG. 18.

Decompression Examples

Herein follows decompression examples using a bit
sequence layout as illustrated in FIGS. 14 to 17.

iPACKMAN/ETC

The compressed image block is represented by the fol-
lowing bit sequence:

10110 010 11010 110 00100 000 101 110 1 1
10 01 11 00 01 01 10 11 10 00 11 00 01 01 00 01

Firstly, bit0-bit2, bit6, bit8-10, bitl3, bit16-18, bit21 and
the diftbit 780 are investigate to determine which decom-
pression mode to use for this image block. Since none of the
color components overflow and the diftbit 780 is set to 1, the
differential default mode of iPACKMAN/ETC should be
selected.

Firstly, the color components 712, 714, 716 of the first
color codeword 710 are expanded into RGB888 to generate
the first color value:

Red: 10110,,,=> 10110101,,,=181
Green: 11010,,,=> 11010110,,,=214

Blue: 00100,;,=> 00100001,,=33

US 9,466,125 B2

25
The differential components 722, 724, 726 of the second
color codeword 720 are added to these components to obtain
the second color value:

Red: 010,,,¢> 2= 181+2=183
Green: 110,,,¢> -2=214-2=212

Blue: 000,,,¢> 0=> 33+42=33

The flipbit is set to 1,,,, which implies that the first color
value is assigned to the eight image elements in the two
uppermost rows of the 4x4 block, whereas the second color
value is used for the eight image elements in the two lowest
rOws.

The two intensity codewords 750A, 750B point an inten-
sity table, exemplified by Table 8 below:

TABLE 8
intensity table
intensity
codeword 115, 104, 004, 015,
0004, -8 -2 2 8
001,,, -12 -4 4 12
0104, -31 -6 6 31
0114, -34 -12 12 34
1004, =50 -8 8 50
01,;, -57 -19 19 57
1104, -80 -28 28 80
1114, -127 -42 42 127

The first intensity codeword 750A applicable for age
elements in the first 2x4 sub -block is 101,,,, representing
the intensity modifiers =57, —19, 19, 57. The second inten-
sity codeword 750B instead represents the intensity modi-
fiers -80, -28, 28, 80.

The first image element in position (0,0) will have the
following color representation:

(181,214,33)+(-19,-19,-19)=(162,195,14)

Correspondingly, the color representation of the last
image element (in position (3,3)) is calculated as follows:

(183,212,33)+(80,80,80)=(255,255,113)

after clamping the calculated color component values
between the minimum allowed value of 0 and the maximum
value of 255.

This procedure is then continues for the rest of the image
elements in the image blocks.
H-Pattern of THUMB

The compressed image block is represented by the fol-
lowing bit sequence:
100 10 0 10 1101 0110 0010 0000 1011 101 1
1001 11 00 01 01 10 11 10 00 11 000 1 01 00 01

In this case, the bits bit0-bit2 are all equal and different
from bit5, which means that the red component overflows
and a first auxiliary mode, i.e. THUMB H-pattern, should be
used. The bit sequence presented above has the layout as
illustrated in FIG. 15.

The first and second color values are generated by
expanding the components 712, 714, 716; 722, 724, 726 of
the two color codewords 710, 720:

Red 0:1010,,, = 10101010,, =170
Green 0: 1101,,,= 11011101,,,=221

Blue 0: 0110,,,=> 01100110,,,=102

20

25

30

35

40

45

65

26

Red 1: 0010,,,=> 00100010,,,=34
Green 1: 0000,,,=> 00000000,,,,=0

Blue 1: 1011,,,=> 10111011,,,=187

The first color value is, thus, (170, 221, 02) and the second
value is (34, 0, 187).

The modifier codeword 750 101,,,=5 implies that the
number 1,,, should be shifted five times leftwards to obtain
100000,,,=32. This value is used to modify the two color
values to obtain four color representations:

€0:(170,221,102)—(32,32,32)=(138,189,70)
C1:(170,221,102)+(32,32,32)=(202,253,134)
€2:(34,0,187)~(32,32,32)=(2,0,155)

€3:(34,0,187)=(32,32,32)(66,32,219)

The first image element has color index 10,,,, which
implies that color representation C2 is used for this image
element. This procedure is continued for the rest of image
elements (index 00,,,¢> CO, 01,, > C2, 10,,,¢>C2 and
11,,,> C3).

T-Pattern THUMB

The compressed image block is represented by the fol-
lowing bit sequence:

101100100001 01 100 0100 0001 0 111 01 1
10 01 11 00 01 01 10 11 10 00 11 00 01 01 00 01

In this case, the green component overflows since bit8-
bit10 are equal and different from bitl12. In addition, the red
component does not overflow since bit0 is different from
bitl. This means that a second auxiliary decompression
mode in the form of T-pattern of THUMB should be selected
and the bit sequence is interpreted as having the layout of
FIG. 16.

The two color values are calculated in the same way as
above for the P-pattern:

Red 0: 0110,,,=> 01100110,,,=102
Green 0: 0101,,,=> 01010101 ,,,=85
Blue 0: 0100,,,=> 01000100,,,=68
Red 1: 0100,,,=> 01000100,,,=68
Green 1: 0001,,,=> 00010001,,,=17

Blue 1: 0111,,, = 01110111,,,=119

In this case the color modifier 750 includes only two bits
01,,,=1, which implies that the number 1,,, should be
shifted leftward one step to obtain 10,,,=2. Two of the four
possible color representations are calculated using this
modifier value, whereas the other two representations are
equal to the two color values:

C0:(102,85,68)
C1:(102,85,68)—(2,2,2)=(100,83,66)
C2:(102,85,68)+(2,2,2)=(104,87,70)

C3:(68,17,119)

The first image element has color index 10,,,, which
corresponds to C2. The procedure is then repeated for the
rest of the image elements in the block.

US 9,466,125 B2

27

Planar

The compressed image block is represented by the fol-
lowing bit sequence:

1 011001 0 0 101011 0 000 00 1 010 111001 1
1001110 001011 011100 0110001 010001

In this example, the blue component overflows since
bit16-bitl8 are equal and different from bit21. In addition,
bit0 is different from bitl (red does not overflow) and bit8
is different from bit9 (green does not overflow). As a
consequence, a fourth decompression mode as defined in the
present invention, PLANAR, should be used.

In this example, three color values are calculated by
expanding the color components 712, 714, 716; 722, 724,
726, 732, 734, 736 of the three color codewords 710, 720,
730 into RGB8SS.

Ry:011001,,=> 01100101,,,=101
Go:0101011,,=> 01010110,,,=86
B:000010,,,=> 00001000,,,=8
Ry:111001,,=> 11100111 ,,=231
Gy:1001110,,,=> 10011101 ,,=157
B:001011,,=> 00101100,,,=44
R,:011100,,,=> 01110001 ,,,=113
G:0110001,,,=> 01100010,,,=98

B:010001,,,=> 01000101 ,,=69

These color values are then weighted and combined
according to the teachings of Table 6 above. The color
representation for the first image element (0,0) is simply the
first value (101, 86, 8). The color representation for image
element (1,0) is three fourths thirds of the first color value
and one fourth of the second color value, i.e. 34(101,86,8)+
14(231,157,44)=(133,104,17). This procedure is continued
for the rest of the image elements to provide a decoded
representation of the image block.

Implementation Aspects

The image encoding (image block encoding) and image
decoding (image block decoding or processing) scheme
according to the present invention could be provided in a
general data processing system, e.g. in a user terminal or
other unit configured for processing and/or rendering
images. Such a terminal could be a computer, e.g. PC, a
game console or a thin client, such as a Personal Digital
Assistance (PDA), mobile unit and telephone.

User Terminal

FIG. 22 illustrates a user terminal 100 represented by a
mobile unit. However, the invention is not limited to mobile
units by could be implemented in other terminals and data
processing units, such as PC computers and game consoles.
Only means and elements in the mobile unit 100 directly
involved in the present invention are illustrated in the figure.

The mobile unit 100 comprises a (central) processing unit
(CPU) 200 for processing data, including image data, within
the mobile unit 100. A graphic system 130 is provided in the
mobile unit 100 for managing image and graphic data. In
particular, the graphic system 130 is adapted for rendering or
displaying images on a connected screen 120 or other
display unit. The mobile unit 100 also comprises a storage
or memory 140 for storing data therein. In this memory 140
image data may be stored, in particular encoded image data
(encoded image blocks) according to the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

28

An image encoder 210 according to the present invention
is provided in the mobile unit 100. This encoder 210 is
configured for encoding an image or texture into an encoded
representation of the image (or texture). As was discussed
above, such an encoded representation comprises a sequence
or file of multiple encoded image blocks. This image
encoder 210 may be provided as software running on the
CPU 200, as is illustrated in the figure. Alternatively, or in
addition, the encoder 210 could be arranged in the graphic
system 130 or elsewhere in the mobile unit 100.

An encoded representation of an image from the block
encoder 210 may be provided to the memory 140 over a
(memory) bus 150, for storage therein until a subsequent
rendering of the image. Alternatively, or in addition, the
encoded image data may be forwarded to an input and output
(I/0) unit 110 for (wireless or wired) transmission to other
external terminals or units. This I/O unit 110 can also be
adapted for receiving image data from an external unit. This
image data could be an image that should be encoded by the
image encoder 210 or encoded image data that should be
decoded. It could also be possible to store the encoded image
representation in a dedicated texture memory provided, for
example, in the graphic system 130. Furthermore, portions
of the encoded image could also, or alternatively, be (tem-
porarily) stored in a texture cache memory, e.g. in the
graphic system 130.

An image decoder 220 according to the present invention
is provided in the mobile unit 100 for decoding an encoded
image in order to generate a decoded image representation.
This decoded representation could correspond to the whole
original image or a portion thereof. The image decoder 220
provides decoded image data to the graphic system 130,
which in turn typically processes the data before it is
rendered or presented on the screen 120. The image decoder
220 can be arranged in the graphic system 130, as is
illustrated in the figure. Alternatively, or in addition, the
decoder 200 can be provided as software running on the
CPU 200 or elsewhere in the mobile unit 100.

The mobile unit 100 could be equipped with both an
image encoder 210 and an image decoder 220, as is illus-
trated in the figure. However, for some terminals 100 it
could be possible to only include an image encoder 210. In
such a case, encoded image data could be transmitted to
another terminal that performs the decoding and, possibly,
rendering of the image. Correspondingly, a terminal 100
could only include an image decoder 220, i.e. no encoder.
Such a terminal 100 then receives a signal comprising
encoded image data from another terminal and decodes it to
generate a decoded image representation. Thus, the encoded
image signal could be wirelessly be transmitted between
terminals using radio transmitter and receiver. Alternatively,
other techniques for distributing images and encoded image
representations between terminals according to the inven-
tion could be employed, such as Bluetooth®, IR-techniques
using IR ports and wired transferring of image data between
terminals. Also memory cards or chips that can be connected
and exchanged between terminals could be used for this
image data inter-terminal distribution.

The units 110, 130, 200, 210 and 220 of the mobile unit
100 may be provided as software, hardware or a combina-
tion thereof.

Image Encoder

FIG. 23 illustrates a block diagram of an embodiment of
an image encoder 210 according to the present invention.
The encoder 210 typically comprises an image decomposer
215 for decomposing or dividing an input image into several
image blocks. The decomposer 215 is preferably configured

US 9,466,125 B2

29

for decomposing the image into image blocks comprising
sixteen image elements (pixels, texels or voxels), i.e. having
a general size of 4x4 image elements. This decomposer 215
could be adapted for decomposing different input images
into image blocks with different sizes. In such a case, the
decomposer 215 preferably receives input information,
enabling identification of which image block format to use
for a given image.

This embodiment of the image encoder 210 comprises a
single block encoder 300. This block encoder 300 encodes
the image block(s) received from the image decomposer to
generate encoded block representation(s). The overall size
of the block representation is smaller than the corresponding
size of the uncoded image block. The block encoder 300 is
preferably configured for processing (encoding) each image
block from the decomposer 215 sequentially.

In an alternative implementation, the encoder 210
includes multiple block encoders 300 for processing mul-
tiple image blocks from the image decomposer 215 in
parallel, which reduces the total image encoding time,

The units 215 and 300 of the image encoder 210 may be
provided as software, hardware or a combination thereof.
The units 215 and 300 may be implemented together in the
image encoder 210. Alternatively, a distributed implemen-
tation is also possible with some of the units provided
elsewhere in the mobile unit.

Block Encoder

FIG. 24 illustrates a block diagram of an embodiment of
a block encoder 300 according to the present invention, such
as the block encoder of the image encoder in FIG. 23. The
encoder 300 comprises a weight assigner 310 for assigning
color weights to at least one subset of the image elements in
an image block that is to be compressed. In a preferred
implementation, the weight assigner 310 assigns Z color
weight per image element in the block, where Z is a multiple
number which is equal to the number of color codewords a
color quantizer 320 determines for the image block. In
another preferred embodiment, the assigner 310 assigns
color weights to the image elements in a block so that color
component values of at least one color component of color
representations used for representing the original colors of
the image elements change monotonically along a row
or/and column of image elements in the block. The weight
assignment performed by the assigner 310 of the block
encoder 300 to image elements in a block is preferably
conducted based on the position of the image elements, i.e.
the relative coordinates of the image elements in the block.

The color quantizer 320 of the block encoder 300 is
arranged for determining, based at least partly on the color
weights assigned by the assigner 310, at least two color
codewords for the image block. In a preferred implementa-
tion, the color quantizer 320 determines three color code-
words, preferably three RGB676 codewords.

The units 310 and 320 of the block encoder 300 may be
provided as software, hardware or a combination thereof.
The units 310 and 320 may be implemented together in the
block encoder 300. Alternatively, a distributed implementa-
tion is also possible with some of the units provided else-
where in the image encoder.

FIG. 25 is a schematic block diagram of another embodi-
ment of a block encoder 300 according to the present
invention. This block encoder 300 is adapted for operating
according to different compression modes, preferably four
different modes. In a first compression mode, the weight
assigner 310 and color quantizer 320 are operated according
to the discussion above in connection with FIG. 24. This,
thus, results in a compressed image block comprising three

10

15

20

25

30

35

40

45

50

55

60

65

30

color codewords and a mode index, which is to be described
further below. An example of such a compressed block is
illustrated in FIG. 17.

In the iPACKMAN/ETC compression mode, the color
quantizer 320 is operated for determining a first color
codeword that is a representation of a first color value and
for determining a second color codeword as a representation
of a differential color, which can be added to the first color
value to obtain a second color value. A modifier quantizer
340 is operated in this mode for determining at least one,
preferably two, intensity codewords as representation of at
least one set of multiple intensity modifiers used for modi-
fying the first or second color value to obtain color repre-
sentations. The intensity codewords are preferably table
indices to a modifier table 500 comprising multiple such
modifier sets. An index selector 350 is provided in the block
encoder 300 for determining, for each image element in the
block, an intensity index associated with one of the intensity
modifiers in the modifier set(s) represented by the intensity
codeword(s).

In the two THUMB modes, the color quantizer 320
determines a first color codeword as a representation of a
first color value. In addition, the quantizer 320 determines a
second codeword as representation of a second color value,
where these two values are located on a first line with a first
direction in color space. The modifier quantizer 340 is
operated in this mode for providing a color modifier code-
word as a representation of at least one color modifier
applicable for moditying the first color value along a second
line having a second direction in color space. This color
modification results in multiple color representations along
the second line. The second and first directions are non-
parallel. The index selector 350 then selects, for each image
element, a color index associated with a color representation
selected from 1) the color representations along the second
line and ii) at least one color representation based on the
second color value.

In a preferred implementation, multiple compressed can-
didate representations are determined for a given image
block, one representation per compression mode. A mode
selector 360 is then implemented for selecting which of the
candidate representations that should be used as compressed
representation for the image block. This selection is prefer-
ably performed based on a comparison of error estimates,
one such estimate per compression mode. The candidate that
is leads to a smallest error is preferably selected by the mode
selector 360. A mode index manager 370 then compiles a
mode index representative of the compression mode result-
ing in the smallest error, i.e. the mode used when generating
the candidate selected by the mode selector 360. This mode
index constitutes a part of the compressed image block.

The units 310 to 370 of the block encoder 300 may be
provided as software, hardware or a combination thereof.
The units 310 to 370 and 500 may be implemented together
in the block encoder 300. Alternatively, a distributed imple-
mentation is also possible with some of the units provided
elsewhere in the image encoder.

Image Decoder

FIG. 26 illustrates a block diagram of an embodiment of
an image decoder 220 according to the present invention.
The image decoder 220 preferably comprises a block selec-
tor 222 that is adapted for selecting, e.g. from a memory,
which encoded image block(s) that should be provided to a
block decoder 400 for decoding. The block selector 222
preferably receives input information associated with the
encoded image data, e.g. from a header or a rendering
engine. An address of an encoded image block having the

US 9,466,125 B2

31

desired image element(s) is then computed based on the
input information. This computed address is preferably
dependent upon the image-element (pixel, texel or voxel)
coordinates within an image. Using the address, the block
selector 222 identifies the encoded image block from the
memory. This identified encoded image block is then fetched
from the storage and provided to the block decoder 400.

The (random) access to image elements of an image block
advantageously enables selective decoding of only those
portions of an image that are needed. Furthermore, the
image can be decoded in any order the data is required. For
example, in texture mapping only portions of the texture
may be required and these portions will generally be
required in a non-sequential order. Thus, the image decoding
of the present invention can with advantage by applied to
process only a portion or section of an image.

The selected encoded image block is then forwarded to
the block decoder 400. In addition to the image block, the
decoder 400 preferably receives information specifying
which image elements of the block that should be decoded.
The information could specify that the whole image block,
i.e. all image elements therein, should be decoded. However,
the received information coulee identify only a single or a
few of the image elements that should be decoded. The block
decoder 400 then generates a decoded representation of the
image element(s) in the block. This decoded representation
is preferably a P-bit color, where P is the number of bits per
image element in the original image, e.g. a 24-bit RUB color.

An optional image composer 224 could be provided in the
image decoder 220. This composer receives the decoded
image elements from the block decoder 400 and composes
them to generate a pixel that can be rendered or displayed on
a screen. This image composer 224 could alternatively be
provided in the graphic system.

Alternatively, the image decoder 220 comprises multiple
block decoders 400. By having access to multiple block
decoders 400, the image decoder 220 can process (decode)
multiple encoded image blocks in parallel. These multiple
block decoders 400 allow for parallel processing that
increases the processing performance and efficiency of the
image decoder 220.

The units 222, 224 and 100 of the image decoder 220 may
be provided as software, hardware or a combination thereof.
The units 222, 224 and 400 may be implemented together in
the image decoder 220. Alternatively, a distributed imple-
mentation is also possible with some of the units provided
elsewhere in the user terminal.

Block Decoder

FIG. 27 is an illustration of an embodiment of a block
decoder 400 according to the present invention. The block
decoder 100 comprises a color generator 410 that generates
at least two color values based on the at least two color
codewords in the compressed block representation. This
color generator 410 is preferably configured for expanding
or extending the quantized color components of the color
codewords into, preferably, RGB888. A weight manager 420
is arranged in the block decoder 400 for providing, for each
image element that should be decoded, color weights
assigned to the image element(s). In a preferred implemen-
tation, corresponding image elements in a given position in
different image blocks have same assigned color weights.
Thus, the color weights are dependent on the coordinates or
positions of the image elements in the block but do not
change for different blocks compressed according to the
present invention. The weight manager 420 therefore pref-
erably provides color weights based on image elements
positions/coordinates in the image block.

5

10

15

20

25

30

35

40

45

55

60

65

32

A color calculator 430 is connected to the color generator
410 and the weight manager 420 and uses the provided color
weights and the generated color values for determining a
color representation to use as a representation of the original
color of the image element. The calculator 430 is preferably
implemented for combining the color values from the gen-
erator 410 but weighted with the color weights from the
weight manager 420.

The units 410 to 430 of the block decoder 400 may be
provided as software, hardware or a combination thereof.
The units 410 to 430 may be implemented together in the
block decoder 400. Alternatively, a distributed implementa-
tion is also possible with some of the units provided else-
where in the image decoder.

FIG. 28 is a schematic block diagram of another embodi-
ment of a block decoder 400 according to the present
invention adapted for multi-mode operation. The block
decoder 400 comprises a mode selector 460 that selects
which decompression mode out of multiple available modes,
preferably four modes, to use when decompressing the
current compressed block representation. This mode selector
460 uses a mode index in the compressed block for selecting
the correct mode.

If the selector 460 selects a first decompression mode, the
color generator 410, weight manager 420 and color calcu-
lator 430 are operated as described in the foregoing in
connection with FIG. 27.

If the selector 460 instead selects a second decompression
mode, corresponding to iPACKMAN/ETYV, the color gen-
erator 410 determines a color value based on the first color
codeword or based on the first and second color codeword
(depending on the actual position of the image element in the
block). In the former case, the quantizer component colors
are simply extended into preferably RGB888. In the latter
case, the differential components of the second codeword are
added to the color components derivable from the first
codeword to determine the color value. A modifier manager
470 is provided in the block decoder 400 for providing,
based on one of the at least one intensity codewords, a set
of multiple intensity modifiers, preferably from a modifier
table 500. A color selector 450 selects, using an intensity
index associated with the current image element, one of the
intensity modifiers from the provided set. A color modifier
440 then uses this selected intensity modifier to intensity
modify the color value to calculate a color representation for
the image element.

If the THUMB modes are selected by the mode selector
460, the color generator 410 determines a first color value
using the first color codeword and determines a second color
value based on the second color codeword. The two values
are located on a first line having a first direction in color
space. The color modifier 440 generates multiple color
representations along a second line having a second different
direction by modifying the first color value with at least one
color modifier represented by the color modifier codeword.
The color selector 450 then selects, based on the color index
sequence, a color representation from i) the multiple color
representations along the second line and ii) at least one
color representation based on the second color value.

The units 410 to 470 of the block decoder 400 may be
provided as software, hardware or a combination thereof.
The units 410 to 470 and 500 may be implemented together
in the block decoder 400. Alternatively, a distributed imple-
mentation is also possible with some of the units provided
elsewhere in the image decoder.

It will be understood by a person skilled in the art that
various modifications and changes may be made to the

US 9,466,125 B2

33

present invention without departure from the scope thereof,
which is defined by the appended claims.

REFERENCES

[1] Delp, Mitchell: Image Compression using Block Trun-
cation Coding. IEEE Transactions on Communications 2,
9 (1979), 1335-1342

[2] Campbell, Defant, Frederiksen, Joyce, Leske, Lindberg,
Sandin: Two Bit/Pixel Full Color Encoding. Ir Proceed-
ings of SIGGRAPH (1986), vol. 22, pp. 215-223

[3] U.S. Pat. No. 5,956,431

[4] S. Fenney, “Texture compression using low-frequency
signal modulation” Graphics Hardware 2003, pp. 81-91,
July 2003

[5] International Application WO 2005/059836

[6] International application WO 2006/006915

[7] Strom, Akenine-Moller: iPACKMAN high-quality, low
complexity texture compression for mobile phones,
Graphics Hardware 05, Los Angeles, USA; June 2005

[8] Strém, Pettersson: “Texture compression: THUMB—
Two Hues Using Modified Brightness”, SIGRAD 05,
Lund, Sweden, November 2005

The invention claimed is:

1. A method implemented in a system for processing a
compressed representation of an image block comprising
multiple image elements, said compressed representation
comprising at least two color codewords, and said method
comprising the steps of:

determining, by the system, at least two color values

based on said at least two color codewords;
for at least one image element in said image block:
providing, by the system, color weights assigned to said
at least one image element, based only on a position of
said image element within said image block, and

calculating, by the system, a color representation based on
said provided color weights and said determined at
least two color values.

2. The method according to claim 1, wherein said pro-
viding step comprises providing color weights defined in
such a way that color component values of at least one color
component of color representations change monotonically
along a row or column of image elements in said image
block.

3. The method according to claim 2, wherein said pro-
viding step comprises providing color weights defined in
such a way that i) color component values of at least one
color component of color representations change monotoni-
cally along a row of image elements in said image block and
i1) color component values of at least one color component
of color representations change monotonically along a col-
umn of image elements in said image block.

4. The method according to claim 3, wherein said com-
pressed representation comprises a first color codeword, a
second color codeword, a color modifier codeword and a
color index sequence, the method further comprising the
steps of:

determining a first color value based on said first color

codeword;

determining a second color value based on said second

color codeword, said first and second color are located
on a first line having a first direction in color space;
generating multiple color representations along a second
line having a second direction in color space by modi-
fying said first color value with at least one color

5

15

25

30

40

45

50

55

65

34

modifier represented by said color modifier codeword,
said second direction being different from said first
direction; and

for at least one image element in said image block:

selecting, based on said color index sequence, a color
representation from 1) said multiple color representa-
tions along said second line and ii) at least one color
representation based on said second color value.

5. The method according to claim 4, wherein said com-
pressed representation comprises a first color codeword, a
second color codeword, at least one intensity codeword and
an intensity index sequence, the method comprising the
steps of:

determining a color value based on said first color code-
word or based on said first and second color codeword;

providing a set of multiple intensity modifiers based on
said at least one intensity codeword;

for at least one image element in said image block:

selecting an intensity modifier from said intensity modi-
fier set based on said intensity index sequence; and

generating a color representation by modifying the inten-
sity of said color value based on said selected intensity
modifier.

6. The method according to claim 1, further comprising:

generating, by the system, a decoded image representation
based on the calculated color representation; and,

displaying, by the system, the decoded image represen-
tation.

7. A system for compressing an image block comprising

multiple image elements, said system comprising:

a weight assigner configured to assign color weights to at
least one subset of said multiple image eclements,
wherein said weight assigner is configured to assign,
for each image element in said at least one subset, said
color weights based only on a position of said image
element in said image block;

a color quantizer configured to determine, based on said
assigned color weights, at least two color codewords
that are representations of at least two color values,
wherein original colors of said multiple image elements
are represented by color representations derivable from
said at least two color values, and wherein color
representations of image elements in said at least one
subset being derivable from combinations of said at
least two color values weighted by said assigned color
weights.

8. The system according to claim 7, wherein said system
is configured to compress said image block according to
multiple compression modes to obtain multiple compressed
candidate image blocks, said system further comprising:

a mode selector configured to select a compressed can-
didate image block of said multiple compressed can-
didate image blocks as compressed representation for
said image block; and

a mode index manager configured to provide a mode
index associated with a compression mode used for
compressing said selected compressed candidate image
block, wherein said weight assigner and said color
quantizer are operated according to a first compression
mode.

9. The system according to claim 8, wherein said system
comprises when operated according to a second compres-
sion mode:

a first color quantizer configured to determine a first color

codeword as a representation of a first color value;

a second color quantizer configured to determine a second
color codeword as a representation of a second color

US 9,466,125 B2

35

value, said first and second color values are located on
a first line having a first direction in color space;

a modifier quantizer configured to provide a color modi-
fier codeword as a representation of at least one color
modifier applicable for modifying said first color value
along a second line having a second direction in color
space, said second direction being different from said
first direction, to obtain multiple color representations
along said second line; and

an index selector configured to select, for each image
element in said image block, a color index associated
with a color representation selected from 1) said mul-
tiple color representations along said second line and ii)
at least one color representation based on said second
color value.

10. A system for processing a compressed representation
of an image block comprising multiple image elements, said
compressed representation comprising at least two color
codewords, and said system comprising:

a color generator configured to determine at least two
color values based on said at least two color code-
words;

a weight manager configured to provide, for at least one
image element in said image block, color weights
assigned to said at least one image element, wherein
said weight manager is configured to provide said color
weights based only on a position of said at least one
image element within said image block, and

a color calculator configured to calculate a color repre-
sentation based on said provided color weights and said
determined at least two color values.

11. The system according to claim 10, wherein said
compressed representation comprises three color codewords
and said color generator is configured to determine three
color values based on three color codewords, and said color
calculator is configured to calculate said color representation
based on said provided color weights and at least two color
values of said determined three color values.

12. The system according to claim 11, wherein said
compressed representation comprises a first color codeword,
a second color codeword, a color modifier codeword and a
color index sequence, and said system comprises:

a first color generator configured to determine a first color

value based on said first color codeword;

a second color generator configured to determine a second
color value based on said second color codeword, said
first and second color values are located on a first line
having a first direction in color space;

a color modifier configured to generate multiple color
representations along a second line having a second
direction in color space by modifying said first color
value with at least one color modifier represented by
said color modifier codeword, said second direction
being different from said first direction; and

a color selector configured to select, for at least one image
element in said image block and based on said color
index sequence, a color representation from 1) said
multiple color representations along said second line
and ii) at least one color representation based on said
second color value.

13. The system according to claim 12, wherein said
compressed representation comprises a first color codeword,
a second color codeword, at least one intensity codeword
and an intensity index sequence, and said system comprises:

a color generator configured to determine a color value
based on said first color codeword or based on said first
and second color codeword;

10

15

20

25

30

35

40

45

50

55

60

65

36

a modifier manager configured to provide a set of multiple
intensity modifiers based on said at least one intensity
codeword;

an intensity selector configured to select, for at least one
image element in said image block, an intensity modi-
fier from said intensity modifier set based on said
intensity index sequence; and

an intensity modifier configured to generate a color rep-
resentation by modifying the intensity of said color
value based on said selected intensity modifier.

14. The system according to claim 10, further comprising:

an image generator configured to generate a decoded
image representation based on the calculated color
representation; and,

a display configured to display the decoded image repre-
sentation.

15. A system for decoding an encoded image that com-
prises encoded representations of image blocks, each image
block comprising multiple image elements, said system
comprising:

a processing system configured to process compressed
representations of image blocks to a generate multiple
color representations of image elements, where each
compressed representation comprising at least two
color codewords, said processing system for processing
each compressed representation of each image block
comprises:

a color generator configured to determine at least two
color values based on said at least two color code-
words;

a weight manager configured to provide, for at least one
image element in said image block, color weights
assigned to said at least one image element, wherein
said weight manager is configured to provide said color
weights based only on a position of said at least one
image element within said image block, and

a color calculator configured to calculate a color repre-
sentation based on said provided color weights and said
determined at least two color values; and

an image composer configured to generate a decoded
representation of said encoded image by composing
said multiple color representations of image elements.

16. The system according to claim 15, further comprising:

a display configured to display the decoded representation
of the encoded image.

17. A data processing system for compressing an image
block comprising multiple image elements, said data pro-
cessing system comprising:

a processor; and,

a memory that stores processor-executable instructions,
wherein the processor interfaces with the memory to
execute the processor-executable instructions, whereby
the data processing system is operable to:

assign color weights to at least one subset of said multiple
image elements, wherein said weight assigner is
arranged for assigning, for each image element in said
at least one subset, said color weights based only on a
position of said image element in said image block;
and,

determine, based on said assigned color weights, at least
two color codewords that are representations of at least
two color values, wherein original colors of said mul-
tiple image elements are represented by color repre-
sentations derivable from said at least two color values,
and wherein color representations of image elements in

US 9,466,125 B2

37

said at least one subset being derivable from combina-
tions of said at least two color values weighted by said
assigned color weights.
18. A data processing system for processing a compressed
representation of an image block comprising multiple image
elements, said compressed representation comprising at
least two color codewords, and said data processing system
comprising:
a processor; and,
a memory that stores processor-executable instructions,
wherein the processor interfaces with the memory to
execute the processor-executable instructions, whereby
the data processing system is operable to:
determine at least two color values based on said at
least two color codewords;

provide, for at least one image element in said image
block, color weights assigned to said at least one
image element, wherein said color weights are based
only on a position of said at least one image element
within said image block, and,

calculate a color representation based on said provided
color weights and said determined at least two color
values.

19. A data processing system for decoding an encoded
image that comprises encoded representations of image
blocks, each image block comprising multiple image ele-
ments, said data processing system comprising:

10

15

38

a processor; and,
a memory that stores processor-executable instructions,
wherein the processor interfaces with the memory to
execute the processor-executable instructions, whereby
the data processing system is operable to:
process compressed representations of image blocks to
a generate multiple color representations of image
elements, where each compressed representation
comprising at least two color codewords, said pro-
cess for processing each compressed representation
of each image block comprises:

determine at least two color values based on said at
least two color codewords;

provide, for at least one image element in said image
block, color weights assigned to said at least one
image element, wherein said color weights are based
only on a position of said at least one image element
within said image block,

calculate a color representation based on said provided
color weights and said determined at least two color
values; and,

generate a decoded representation of said encoded
image by composing said multiple color representa-
tions of image elements.

#* #* #* #* #*

